• Title/Summary/Keyword: Battery Management

Search Result 600, Processing Time 0.033 seconds

Battery Response Characteristics According to System Modeling and Driving Environment of Electric Vehicles (전기자동차 시스템 모델링 및 주행 환경에 따른 배터리 응답 특성 연구)

  • Chu, Yong-Ju;Park, Jun-Young;Park, Gwang-Min;Lee, Seung-Yop
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • Currently, various researches on electric vehicle battery systems have been conducted from the viewpoint of safety and performance for SoC, SoH, etc. However, it is difficult to build a precise electrical model of a battery system based on the chemical reaction and SoC prediction. Experimental measurements and predictions of the battery SoC were usually performed using dynamometers. In this paper, we construct a simulation model of an electric vehicle system using Matlab Simulink, and confirm the response characteristics based on the vehicle test driving profiles. In addition, we show that it is possible to derive the correlation between the SoC, voltage, and current of the battery according to the driving time of the electric vehicle in conjunction with the BMS model.

Development of Life Extension System of Lead Battery in Electrical Bicycle (전기자전거용 납축전지 수명연장 시스템 개발)

  • Choi, Bumchoul;Lee, Jaeyoung;Lee, Hongki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.145.1-145.1
    • /
    • 2010
  • 현재 운송수단의 주 동력원으로 사용되고 있는 내연기관은 연료로 사용되는 석유로부터 온실가스가 발생하기 때문에 지구 환경악화의 주범으로 작용하기 때문에 교토 의정서에 의해 많은 제재를 받고 있으며, 이 문제를 해결하기 위해서 다양한 종류의 하이브리드 제품으로 대체하고자 하는 연구개발이 세계 각국에서 활발히 진행되고 있다. 한국은 저탄소 녹색성장이라는 기치하에 2012년 까지 2000만대의 자전거 보급과 세계3대 자전거 생산국으로 발전한다는 비전을 제시하여 향후 자전거 산업이 비약적으로 발전할 것으로 예상되고 있다. 이와 같은 비전을 달성하기 위해서는 저가이면서 출력이 크고 수명이 긴 축전지의 개발이 필수적이며, 이와 더불어 축전지의 성능 발휘를 위해서 이것을 제어할 수 있는 battery management system(BMS)의 개발도 같이 이루어져야 한다. 리튬 배터리의 성능이 우수한 것은 익히 알려진 사실이지만, 고가이기 때문에 소비자들의 부담이 적지 아니하다. 따라서 혁신적인 기술이 개발되어 저가의 배터리를 사용하기 전까지는 납축전지도 같이 사용될 것이며, 본 과제에서는 이와 같은 납 축전지의 수명을 연장시킬 수 있는 BMS를 개발하였다.

  • PDF

Management of the Energy Storage System for a microgrid (마이크로그리드에의 적용을 위한 에너지 저장장치의 관리)

  • Kim, Sung-Hyun;Lee, Kye-Byung;Son, Kwang-M.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.505_506
    • /
    • 2009
  • This paper presents effective operation methods for the battery energy storage applied to a microgrid. In an islanded microgrid, energy storage is needed to satisfy an energy balance between generation and consumption. The microgrid can be classified according to the ratio of the sensitive load and renewable energy source in the microgrid. For effective management of the battery energy storage, based on the classified microgrid, suitable operation methods for the battery energy storage system are provided from well-known battery applications.

  • PDF

Study of electric vehicle battery reliability improvement

  • Ismail, A.;Jung, W.;Ariffin, M.F.;Noor, S.A.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • Due to restriction of vehicle emissions and high demand for fossil fuels nowadays, car manufacturers around the world are looking into alternative ways in introducing new car model that would vastly captured the market. Thus, Electric Vehicle (EV) has been further developed to take the advantage of the current global issues on price of fossil fuels and impact on the environment. Since car battery plays the crucial role on the overall performance of EV, many researchers have been working on improving the component. This paper focused on the reliability of EV battery which involves recognizing failure types, testing method and life prediction method. By focusing on these elements, the reliability feature being identified and as a result the batteries life will be prolonged.

  • PDF

A Dual-Input Energy Harvesting Charger with MPPT Control (MPPT 제어 기능을 갖는 이중 입력 에너지 하베스팅 충전기)

  • Jeong, Chan-ho;Kim, Yong-seung;Jeong, Hyo-bum;Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.484-487
    • /
    • 2015
  • This paper describes a dual-input battery charger with MPPT control using photovoltaic and piezoelectric energy. Each energy is harvested from photovoltaic cells and piezoelectric cells and is stored to each capacitor. The battery voltage is boosted by charger block and two energy sources are used as input to charge battery capacitor. A DC-DC boost converter is designed to boost the battery voltage, and inductor sharing technique is employed such that only one inductor is required. The time division ratio for piezoelectric cell and photovoltaic cell is set to 8:1. The proposed circuit is designed in a 0.35um CMOS process technology. The condition of battery capacitor is managed by battery management block and the battery voltage can be boosted up to 3V. The maximum efficiency of the designed entire system is 88.56%, and the chip area including pads is $1230um{\times}1330um$.

  • PDF

An Experimental Study on the Charging/Discharging Characteristics and Safety of Lithium-Ion Battery System for Submarine Propulsion (잠수함 추진용 리튬이온전지 충방전 특성 및 안전성 확보를 위한 실험적 연구)

  • Kim, Beomseog;Sohn, Seung hyun;Kang, Seokjoong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.225-233
    • /
    • 2021
  • Conventional submarine propulsion batteries have mainly used lead acid batteries, which have proved relatively safe, but in recent years, research on mounting lithium-ion batteries to improve the underwater operation capability of submarines is underway in advanced countries such as Japan. Korea has world-class technology in the development of electric vehicles and lithium-ion batteries for energy storage, but fire safety accidents continue to occur in electric vehicles and energy storage lithium-ion batteries. In order to mount the lithium-ion battery in a submarine, it is necessary to check the safety as well as whether the performance is improved compared to the lead acid battery. Through the charge/discharge experiment of this lithium-ion battery module unit, it was possible to measure how much performance was improved compared to the lead acid battery. Safety tests were conducted on the lithium-ion battery module assuming that it was mounted on a submarine, and it was confirmed that safety was secured when applied to a submarine. Since many modules are mounted on actual submarines, it has been confirmed that it can be applied to submarine systems by simulating charge/discharge characteristics through Hardware-in-the Loop(HILS). Through the results of this study, the application of lithium-ion batteries to submarines is expected to significantly improve the sustainability of underwater operations.

Battery Failure Prediction using BMS Information of ESS Rooms at Offshore Installation Vessel (해양설치선 ESS Room의 BMS정보를 활용한 Battery 고장예측)

  • Kim, Woo-Young;Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.59-61
    • /
    • 2021
  • The electric propulsion development is underway to minimize pollutants and greenhous gas emissions during the operation of ships / offshore installation vessels. The importance of the use and efficient management of batteries, which is an ESS system in ships / offshore installation vessels, is increasing. Generally, in ESS where battery is applied, cell balancing and life span are monitored in real time by BMS. Ships / offshore installation vessel are equipped with several ESS rooms, and ESS rooms with ESS systems of the same specification are being constructed due to the recent demand for electric propulsion development. In this paper, we propose an algorithm to additionally predict and diagnose battery pack and cell balancing failures by comparing BMS data for each rooms. The proposed algorithm compares the BMS data of each ESS Room according to the environmental change of the ship / offshore installation vessels, measures accurate status information, and reliably monitors it to prevent accidents in advance.

  • PDF

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

A Study on SOC Algorithm and Design of Battery ECU for Hybrid Electric Vehicle (하이브리드 전기자동차용 배터리 ECU 설계 및 잔존용량 알고리즘에 관한 연구)

  • 남종하;최진홍;김승종;황호석;김재웅
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • The major factors that make ZEV affordable are the range and cost. The development of advanced batteries such as Ni-MH battery can solve the problem partly; on the hand the battery management system is an efficient way. Ni-MH battery and battery ECU is a key component influencing ZEV performance, such as range, acceleration and hill-climbing capability. Because most problems related to battery such as short circuit, over-discharge and overcharge occur easily during operation, it is necessary to develop a dedicated battery ECU for HEV. This paper proposes a new SOC algorithm for the HEV based on the terminal voltage and current integration. And battery ECU was designed and analyzed. Also, the validity is confirmed through experiment.

Numerical Analysis of Heat Transfer Characteristics of Cooling System for 2.3 kW EV Battery Pack (2.3 kW급 전기자동차 배터리팩용 냉각 장치의 열전달 특성에 관한 해석적 연구)

  • Seong, Dong-Min;Park, Yong-Seok;Sung, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.44-49
    • /
    • 2022
  • The improvement in the battery performance and life using a battery thermal management system directly affects the improvement in the performance, life, and energy efficiency of electric vehicles. Therefore, this study numerically analyzed the heat exchange processes between the coolant inside the cooling plate channel and the heat generated by the battery. The cooling performance was analyzed based on the average temperature, temperature uniformity, and the maximum and minimum temperature differences of the battery. A performance difference existed depending on the coolant inlet temperature but showed the same tendency of cooling performance according to the shape of each plate's channel. Type 1 showed the best results in terms of battery temperature uniformity, which is the most important measure of battery performance; Type 2 showed the best results in terms of the average temperature of the battery; and Type 3 showed the best results in terms of the maximum and minimum temperature differences of the battery compared with that of the other cooling plates.