• Title/Summary/Keyword: Battery Lifetime

Search Result 215, Processing Time 0.024 seconds

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

Reference Interpolation Protocol for Reducing the Synchronization Messages in Wireless Sensor Network (무선 센서 네트워크에서 동기화 메시지 감소를 위한 참조 보간 프로토콜)

  • Park, Chong-Myung;Lim, Dong-Sun;Lee, Joa-hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.446-457
    • /
    • 2007
  • In wireless sensor network, to provide the proper responses quickly for diverse events, wireless sensor nodes have to cooperate with each other. For successful cooperation, the time synchronization among sensor nodes is an important requirement for application execution. In the wireless sensor network, the message packets including time information are used for the time synchronization. However, the transmission of many message packets will exhaust the battery of wireless sensor nodes. Since wireless sensor nodes works on the limited battery capacity, the excessive transmission of message packets has an negative impact upon their lifetime. In this paper, the Reference Interpolation Protocol (RIP) is proposed to reduce the number of message packets for the time synchronization. The proposed method performs the time interpolation between the reference packet's time and the global time of the base station. The proposed method completes the synchronization operation with only 2 message packets when compared to the previous Reference Broadcast Synchronization (RBS) technique. Due to the simple synchronization procedure, our method greatly reduces the number of synchronization messages and showed the 12.7 times less power consumption than the RBS method. From the decrease in the transmission of message packets, the convergence time among wireless sensor nodes is shortened and the lifetime of wireless sensor nodes is also prolonged as much as the amount of saved battery energy.

Energy-Aware Routing Algorithm using Backup Route for Ad hoc Network (애드혹 네트워크에서의 보조 경로를 이용한 에너지 인식 라우팅 알고리즘)

  • Jung Se-Won;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-32
    • /
    • 2005
  • This paper proposes a new algorithm for the energy constraint ad-hoc network which efficiently spread the energy usage over the network through the backup route scheme in order to increase the network lifetime. Recently, the various energy-efficient routing algorithms based on On-demanding method are proposed. Among them, PSR(Power-aware Source Routing) increased the network lifetime through the periodical route alternation depended on the use of the battery while DSR(Dynamice Source Routing) uses only the route selected during the route discovery phase. But PSR has a problem that it increases the route overhead because of the frequent flooding for the route alternation. For solving this problem, we propose HPSR(Hierarchical Power-aware Source Routing) which uses the backup route set during the route discovery in order to alternation the route without the flooding. HPSR increases the network lifetime due to the frequent route alternation using backup route while it decreases the routing overhead due to the reduced flooding. In this paper, we also prove the performance of HPSR through the simulation using OPNET.

An Improved Energy Aware Greedy Perimeter Stateless Routing Protocol for Wireless Ad Hoc Network (무선 Ad Hoc 네트워크를 위한 개선된 위치정보 기반의 에너지를 고려한 라우팅 프로토콜)

  • Kim, Hak-Je;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.25-31
    • /
    • 2009
  • In this paper we propose an improved energy aware greedy perimeter stateless routing protocol (EAGPSR) for wireless ad hoc network. The existing greedy perimeter stateless routine (GPSR) has some problems with overloaded node and void situation. The improved EAGPSR protocol is proposed to remedy these problems. It also gives the solution for the fundamental problem in geographical routine called void communication. It considers two parameters (Residual Energy of battery and distance to the destination) for the next hop selection. In order to use efficiently limited-energy of node in wireless ad hoc network, network lifetime is focused. To evaluate the performance of our protocol we simulated EAGPSR in ns-2. The simulation results show that the proposed protocol achieves longer network lifetime compared with greedy perimeter stateless routing (GPSR) and the existing Energy aware greedy perimeter stateless routing protocol (EAGPSR).

Tree-Based Clustering Protocol for Energy Efficient Wireless Sensor Networks (에너지 효율적 무선 센서 네트워크를 위한 트리 기반 클러스터링 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.69-80
    • /
    • 2010
  • Wireless sensor networks (WSN) consisting of a large number of sensors aim to gather data in a variety of environments and are being used and applied to many different fields. The sensor nodes composing a sensor network operate on battery of limited power and as a result, high energy efficiency and long network lifetime are major goals of research in the WSN. In this paper we propose a novel tree-based clustering approach for energy efficient wireless sensor networks. The proposed scheme forms the cluster and the nodes in a cluster construct a tree with the root of the cluster-head., The height of the tree is the distance of the member nodes to the cluster-head. Computer simulation shows that the proposed scheme enhances energy efficiency and balances the energy consumption among the nodes, and thus significantly extends the network lifetime compared to the existing schemes such as LEACH, PEGASIS, and TREEPSI.

Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET (MANET에서 배터리 잔량과 신호세기를 동시에 고려한 Power-aware 라우팅 프로토콜)

  • Park Gun-Woo;Choi Jong-Oh;Kim Hyoung-Jin;Song Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.219-226
    • /
    • 2006
  • The shortest path is only maintained during short time because network topology changes very frequently and each mobile nodes communicate each other by depending on battery in MANET(Mobile Ad-hoc Network). So many researches that are to overcome a limitation or consider a power have executed actively by many researcher. But these protocols are considered only one side of link stability or power consumption so we can make high of stability but power consumption isn't efficient. And also we can reduce power consumption of network but the protocol can't make power consumption of balancing. For that reason we suggest RBSSPR(Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET). The RBSSPR considers residual capacity of battery and signal strength so it keeps not only a load balancing but also minimizing of power consumption. The RBSSPR is based on AODV(Ad-hoc On-demand Distance Vector Routing). We use ns-2 for simulation. This simulation result shows that RBSSPR can extense lifetime of network through distribution of traffic that is centralized into special node and reducing of power consumption.

Study on the Thermal Design of Nuclear Battery for Lunar Mission (한국형 달 탐사용 원자력전지의 열제어 구조 연구)

  • Hong, Jintae;Son, Kwang-Jae;Kim, Jong-Bum;Park, Jong-Han;Ahn, Dong-Gyu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • For a stable electric power supply in the space, nuclear batteries have been used as the main power source in a spacecraft owing to their long lifetime and high reliability. In accordance with the plan for lunar mission in Korea, nuclear batteries will supply electricity to the rover that needs to be developed. According to the information about the estimated payload, Korea Atomic Energy Research Institute started with the conceptual design based on the previous studies in USA and Russia. Because a nuclear battery converts the decay heat of the radioisotope into electricity, thermal design, radiation shield, and shock protection need to be considered. In this study, two types of nuclear batteries, radial type and axial type, were designed according to the alignment of the thermoelectric module. Heat transfer analyses were performed to compare their thermoelectric efficiency, and test mockups were fabricated to evaluate their performances.

Development of a Fast Charging System Utilizing Charge Profile and Cell Balance Control Technology for Large Capacity Lithium-ion Batteries (충전 프로파일 및 셀 밸런스 제어기술을 활용한 대용량 리튬이온 배터리 고속충전시스템 개발)

  • Yunana, Gani Dogara;Ahn, Jae Young;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Lithium-ion cells have become the go-to energy source across all applications; however, dendritic growth remains an issue to tackle. While there have been various research conducted and possible solutions offered, there is yet to be one that efficiently rules out the problem without, however, introducing another. This paper seeks to present a fast charging method and system to which lithium-ion batteries are charged while maintaining their lifetime. In the proposed method, various lithium cells are charged under multiple profiles. The parameters of charge profiles that inflict damage to the cell's electrodes are obtained and used as thresholds. Thus, during charging, voltage, current, and temperature are actively controlled under these thresholds. In this way, dendrite formation suppressed charging is achieved, and battery life is maintained. The fast-charging system designed, comprises of a 1.5kW charger, an inbuilt 600W battery pack, and an intelligent BMS with cell balancing technology. The system was also designed to respond to the aging of the battery to provide adequate threshold values. Among other tests conducted by KCTL, the cycle test result showed a capacity drop of only 0.68% after 500 cycles, thereby proving the life maintaining capability of the proposed method and system.

Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes (배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링)

  • Kim, Dong-Joo;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1423-1435
    • /
    • 2010
  • Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

Lifetime test of batteries for BLE modules for site identification of vessel's crews and passengers (SIVCP) (SIVCP용 BLE 모듈의 배터리 수명시험)

  • Kwon, Hyuk-joo;Kim, Min-Gwon;Kim, Yoon-Sik;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.754-759
    • /
    • 2015
  • Nowadays, short distance communication systems with low power energy (LPE) are developed for identification and monitoring of site identification of vessel crews and passengers (SIVCP). LPE communication modules, such as Bluetooth low energy (BLE) and Zigbee, are used for short distance communications with LPE. These modules enable 1:N communications and their popularity is growing since the modules can be mounted on movable objects, such as mobile devices and human body. When these modules are used, the important factor that affects their operation time and design are the capacity and size of battery. Therefore, they must be made as small as possible, and the battery should be selected to be slightly smaller than the module. In this study, we calculate the theoretical life of batteries used in SIVCP BLE modules using data sheet and discharge characteristic graph under the condition of a 1/250 transmission-ratio (TR). We thus calculate experimental life by measuring transmission current for the same TR, and low speed mode current for a 1/5000 TR and measure long-term experimental life using 1/25 TR for days. Through these experiments, we verify experimental methods for the prediction and extension of battery life that would enable us to select appropriate sizes of batteries based on vessel usage and passenger types. The selections of the module TR and battery size are important factors affecting the cost reduction of module design, the battery maintenance, and passenger convenience.