• Title/Summary/Keyword: Battery Life

Search Result 610, Processing Time 0.028 seconds

Battery Failure Prediction using BMS Information of ESS Rooms at Offshore Installation Vessel (해양설치선 ESS Room의 BMS정보를 활용한 Battery 고장예측)

  • Kim, Woo-Young;Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.59-61
    • /
    • 2021
  • The electric propulsion development is underway to minimize pollutants and greenhous gas emissions during the operation of ships / offshore installation vessels. The importance of the use and efficient management of batteries, which is an ESS system in ships / offshore installation vessels, is increasing. Generally, in ESS where battery is applied, cell balancing and life span are monitored in real time by BMS. Ships / offshore installation vessel are equipped with several ESS rooms, and ESS rooms with ESS systems of the same specification are being constructed due to the recent demand for electric propulsion development. In this paper, we propose an algorithm to additionally predict and diagnose battery pack and cell balancing failures by comparing BMS data for each rooms. The proposed algorithm compares the BMS data of each ESS Room according to the environmental change of the ship / offshore installation vessels, measures accurate status information, and reliably monitors it to prevent accidents in advance.

  • PDF

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

통신위성 전력제어 및 분배장치 설계 및 해석

  • Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.108-116
    • /
    • 2003
  • This research presents the design and analysis of PCDU(Power Control & Distribution Unit) of communication satellite. The PCDU of a spacecraft must provide adequate power to each subsystem and payload during mission life, and it also needs high reliability and performance in space environment. A control circuit of the PCDU include bus sensing and filter circuits, error signal amplification circuit, error compensation circuit of SAS(Shunt Assembly Switch) and BPC(Battery Power Converter). The phase margin and DC gain for the designed circuits are analyzed through the frequency response characteristics of the compensated control circuit. And also the transfer function of the battery power converter circuit are discussed at the battery CCCM(Charge Continuous Conduction Mode) and battery C/DCCM(Continuous/Discontinuous Conduction Mode).

  • PDF

Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery (바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.285-300
    • /
    • 2012
  • Vanadium redox flow battery is believed to be one of important energy storage technologies, because it has many advantages, including long cycle life, high energy efficiency, low cost of maintenance, and environmental friendship. As one of the key components of vanadium redox flow battery system, an ion exchange membrane is required to prevent cross-mixing of the positive and negative electrolytes while allowing ionic continuity. However, ion exchange membrane such as Nafion using in VRBs still face some challenges in meeting performance and cost requirements for broad penetration. Therefore, to resolve these problems, developed various ion exchange membranes are investigated and compared with Nafion membranes in terms of their performance in vanadium redox flow battery.

Analysis of Real-Time Estimation Method Based on Hidden Markov Models for Battery System States of Health

  • Piao, Changhao;Li, Zuncheng;Lu, Sheng;Jin, Zhekui;Cho, Chongdu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.217-226
    • /
    • 2016
  • A new method is proposed based on a hidden Markov model (HMM) to estimate and analyze battery states of health. Battery system health states are defined according to the relationship between internal resistance and lifetime of cells. The source data (terminal voltages and currents) can be obtained from vehicular battery models. A characteristic value extraction method is proposed for HMM. A recognition framework and testing datasets are built to test the estimation rates of different states. Test results show that the estimation rates achieved based on this method are above 90% under single conditions. The method achieves the same results under hybrid conditions. We can also use the HMMs that correspond to hybrid conditions to estimate the states under a single condition. Therefore, this method can achieve the purpose of the study in estimating battery life states. Only voltage and current are used in this method, thereby establishing its simplicity compared with other methods. The batteries can also be tested online, and the method can be used for online prediction.

Diagnosis of State Of Health(SOH) for Battery Management System(BMS) (축전지 관리시스템(BMS)을 위한 건강상태(SOH) 진단방법)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.558-562
    • /
    • 2006
  • Although secondary batteries, called rechargeable batteries, are very important energy elements in modern society, their application is hindered by the typical nonlinear and irreversible characteristics. Precise monitoring of the state of health(SOH) for each battery cell on line is crucial for stable operation and proper management of them. This paper proposes diagnostic method of the SOH for a battery cell on line without interruption on its operation nor bad effect on its life. This paper practically diagnoses on 120 industrial batteries and provides some guide lines to decide whether to exchange or not.

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.

Lifetime test of batteries for BLE modules for site identification of vessel's crews and passengers (SIVCP) (SIVCP용 BLE 모듈의 배터리 수명시험)

  • Kwon, Hyuk-joo;Kim, Min-Gwon;Kim, Yoon-Sik;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.754-759
    • /
    • 2015
  • Nowadays, short distance communication systems with low power energy (LPE) are developed for identification and monitoring of site identification of vessel crews and passengers (SIVCP). LPE communication modules, such as Bluetooth low energy (BLE) and Zigbee, are used for short distance communications with LPE. These modules enable 1:N communications and their popularity is growing since the modules can be mounted on movable objects, such as mobile devices and human body. When these modules are used, the important factor that affects their operation time and design are the capacity and size of battery. Therefore, they must be made as small as possible, and the battery should be selected to be slightly smaller than the module. In this study, we calculate the theoretical life of batteries used in SIVCP BLE modules using data sheet and discharge characteristic graph under the condition of a 1/250 transmission-ratio (TR). We thus calculate experimental life by measuring transmission current for the same TR, and low speed mode current for a 1/5000 TR and measure long-term experimental life using 1/25 TR for days. Through these experiments, we verify experimental methods for the prediction and extension of battery life that would enable us to select appropriate sizes of batteries based on vessel usage and passenger types. The selections of the module TR and battery size are important factors affecting the cost reduction of module design, the battery maintenance, and passenger convenience.

Fuzzy Droop Control considering SOC Balancing of BESSs (다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.152-159
    • /
    • 2001
  • Electric vehicle performance is very dependent on traction batteries. For developing the electric vehicles with high performance and good reliability, the traction batteries have to be managed to get maximum performance under various operating conditions. The enhancement of the battery performance can be accomplished by implementing battery management system (BMS) that plays important roles of optimizing the control mechanism of charge and discharge of the batteries as well as monitoring battery status. In this study the battery management system has been developed for maximizing the use of Ni/MH batteries in electric vehicle. This system provides several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state of charge, safety and thermal management. The BMS was installed in and tested using the DEV5-5 electric vehicle developed by Daewoo Motor Co. and Institute for Advanced Engineering in Korea. The 18 modules of Panasonic Ni/MH battery, 12 V-95 Ah, were used in the DEV5-5. The high accuracy within the range of $3\%$ and the good reliability were shown in the test results. The BMS can also improve the performance and cycle life of Ni/MH battery pack as well as the reliability and safety of the electric vehicles (EV).