• Title/Summary/Keyword: Battery Electric Vehicles

Search Result 410, Processing Time 0.031 seconds

A Study on the Battery Cell Defect Analysis Method Using the GAN Model (GAN 모델을 이용한 배터리 셀 불량 분석 기법에 관한 연구)

  • Kim, Jeyeon;Park, Hangyu;Yoon, Hyesu;Kang, Seongkyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.168-169
    • /
    • 2022
  • As the electric vehicle market has grown rapidly, the battery market has grown exponentially. Due to the gap between the generation speed of quality control technology and battery mass production speed for batteries mounted on electric vehicles, many durability problems have arisen for batteries. Most accidents are caused by electrical factors, but there is no technology to quickly inspect them. In this paper, we are going to propose a quick analysis of battery cell defects using the GAN model.

  • PDF

Evaluation of Voltage Sag and Unbalance due to the System Connection of Electric Vehicles on Distribution System

  • Lee, Soon-Jeong;Kim, Jun-Hyeok;Kim, Doo-Ung;Go, Hyo-Sang;Kim, Chul-Hwan;Kim, Eung-Sang;Kim, Seul-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.452-460
    • /
    • 2014
  • Due to increased concerns for rising oil prices and environmental problems, various solutions have been proposed for solving energy problems through tightening environmental regulations such as those regarding $CO_2$ reduction. Among them, Electrical Vehicles (EVs) are evaluated to be the most realistic and effective approach. Accordingly, research and development on EVs and charging infrastructures are mainly proceeding in developed countries. Since EVs operate using electric energy form a battery, they must be connected to the power system to charge the battery. If many EVs are connected during a short time, power quality problems can occur such as voltage sag, voltage unbalance and harmonics which are generated from power electronics devices. Therefore, when EVs are charged, it is necessary to analyze the effect of power quality on the distribution system, because EVs will gradually replace gasoline vehicles, and the number of EVs will be increased. In this paper, a battery for EVs and a PWM converter are modeled using an ElectroMagnetic Transient Program (EMTP). The voltage sag and unbalance are evaluated when EVs are connected to the distribution system of the Korea Electric Power Corporation (KEPCO). The simulation results are compared with IEEE standards.

A Study on the Construction of Charging System for Small Electric Vehicles Less than 1 [kW] (1[kW] 이하의 소형 전동차량용 충전설비 구축에 관한 연구)

  • Kim, Keunsik
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.93-99
    • /
    • 2019
  • Small electric vehicles, such as electric bicycles or electric kickboards, operate with the power charged in a battery mounted in the vehicle, and some of these users use emergency power sockets installed in apartments or public facilities without getting permission. For this reason, the necessity for a simple method to approve the use of power with instant payment system rises for the building managers and small vehicle users as well. In this paper, we propose a technique to charge batteries for small electric vehicles with less than 1 [kW] through a power supply control device installed on the existing 15 [A]. sockets on the common residential properties or public buildings. It also describes the power user authorization algorithm and how to charge fees for the power used. As a result of this research, this paper shows how the user authentication power supply system with the effect of preventing power theft can be realized by creating an environment in which a battery in a small electric vehicle can be easily charged.

Future Research Direction through Reviewing Recent Trends in Environment-friendly Vehicles Research (Part 2) (친환경자동차의 연구동향 분석을 통한 미래 발전방향 제안 (Part 2))

  • Ahn, Kyu Hwan;Ko, Jang Hyok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.151-155
    • /
    • 2022
  • In this paper, we analyze the current research technology trends through the literature reviews of technical outlines of electric vehicles and hydrogen fuel cell vehicles, domestic and overseas policy trends, etc. After analyzing the literature, we found out while the re-use and recycling of waste batteries and the in-wheel motor systems are essential areas for the development of electric vehicles and hydrogen fuel cell vehicles, the related research is not quite sufficient, so the direction for further research is proposed at the conclusion.

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Design and development of less than 1Kw Lithium rechargeable battery pack

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2018
  • Lithium-ion batteries have been used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle. This paper aims to improve the convenience of users by changing the wired battery stack used in the battery pack, wirelessly using RFID, reducing the internal volume of the battery pack, reducing the size of the battery pack. In this paper, we propose a battery management system which can provide the flexibility of battery pack expansion and maintenance by using lithium ion battery, battery management system (BMS) and wireless communication for light weight of 1Kw small battery pack. Also, by flexibly arranging the cell layout inside the battery pack and designing to reduce the size of the outer shape of the battery pack.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

Analysis of Security Issues in Wireless Charging of Electric Vehicles on the Move (이동 중인 전기자동차 무선충전의 보안위협 분석)

  • Rezeifar, Zeinab;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.941-951
    • /
    • 2016
  • Limitation of fossil energy from one side and the efficiency of the electrical engine from another side motivate the industrials to encourage people for utilizing electric vehicles (EVs). To decrease the cost of EVs, the size of battery should be reduced which causes an inconvenient frequent recharging. Wireless charging is a solution for charging of electric vehicles on the move, but frequent charging causes to disclose users' location information. In this paper, we first propose an infrastructure for wireless charging of electric vehicles, and then we explain security issues that can be stated in this condition.

An Experimental Study on the Charging/Discharging Characteristics and Safety of Lithium-Ion Battery System for Submarine Propulsion (잠수함 추진용 리튬이온전지 충방전 특성 및 안전성 확보를 위한 실험적 연구)

  • Kim, Beomseog;Sohn, Seung hyun;Kang, Seokjoong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.225-233
    • /
    • 2021
  • Conventional submarine propulsion batteries have mainly used lead acid batteries, which have proved relatively safe, but in recent years, research on mounting lithium-ion batteries to improve the underwater operation capability of submarines is underway in advanced countries such as Japan. Korea has world-class technology in the development of electric vehicles and lithium-ion batteries for energy storage, but fire safety accidents continue to occur in electric vehicles and energy storage lithium-ion batteries. In order to mount the lithium-ion battery in a submarine, it is necessary to check the safety as well as whether the performance is improved compared to the lead acid battery. Through the charge/discharge experiment of this lithium-ion battery module unit, it was possible to measure how much performance was improved compared to the lead acid battery. Safety tests were conducted on the lithium-ion battery module assuming that it was mounted on a submarine, and it was confirmed that safety was secured when applied to a submarine. Since many modules are mounted on actual submarines, it has been confirmed that it can be applied to submarine systems by simulating charge/discharge characteristics through Hardware-in-the Loop(HILS). Through the results of this study, the application of lithium-ion batteries to submarines is expected to significantly improve the sustainability of underwater operations.

Development of Simulator for Hierarchical Battery Management System (계층적 배터리 관리 시스템 시뮬레이션 기술 개발)

  • Kang, Hyunwoo;Ahn, SungHo;Kim, Dongkyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.213-218
    • /
    • 2013
  • In this research, we report on the development of simulation system for performance verification of BMS(Battery Management System) which is utilized in electric vehicles. In the industrial circles, a manufacturer of BMS typically tests their system with real battery packs. However, it takes a long time to test all functions of BMS. Here, we develop BMU(Battery Managament Unit) as an embedded board, which will be installed in electric vehicle for controlling battery packs. All other environment factors for testing BMU are developed in softwares in order to reduce the term of test. Especially, the proposed system consists of cell simulator and CMU(Cell Management Unit) simulator which simulate real battery cells and control battery cells. These simulators enable the BMU to test more battery cells. In addition, proposed system provides diagnosis program in order to diagnose and monitor the condition of BMS which makes the test of BMS more easily. In order to verify the performance of the developed simulator, we have performed the experiment with real battery packs and our simulator. Through comparing two results of experiments, we verify that developed simulator shows better performance in terms of less amount of testing duration though having high reliability.