• 제목/요약/키워드: Battery Electric Vehicles

Search Result 407, Processing Time 0.026 seconds

Development of Slurry Flow Control and Slot Die Optimization Process for Manufacturing Improved Electrodes in Production of Lithium-ion Battery for Electric Vehicles (전기자동차 리튬이온 배터리 제조공정에서 Loading Level 산포최소화 코팅을 통한 전극 품질개선에 관한 연구)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.14-20
    • /
    • 2018
  • Electric vehicles are environmentally friendly because they emit no exhaust gas, unlike gasoline automobiles. However, since they are driven by the electric power from batteries, the distance they can travel based on a single charge depends on their energy density. Therefore, the lithium-ion battery having a high energy density is a good candidate for the batteries of electric vehicles. Since the electrode is an essential component that governs their efficiency, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the coating process is a critical step in the manufacturing of the electrode, which has a significant influence on its performance. In this paper, we propose an innovative process for improving the efficiency and productivity of the coating process in electrode manufacturing and describe the equipment design method and development results. Specifically, we propose a design procedure and development method in order to improve the core plate coating quality by 25%, using a technology capable of reducing the assembly margin due to its high output/high capacity and improving the product capacity quality and assembly process yield. Using this method, the battery life of the lithium-ion battery cell was improved. Compared with the existing coating process, the target loading level is maintained and dispersed to maintain the anode capacity (${\pm}0.4{\rightarrow}{\pm}0.3mg/cm^2r$ reduction).

A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery (전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어)

  • Kang, Taewon;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

A Study on the Production of Supporting Ring Using Casting for Public Environmental Vehicles (대중적 환경차를 위한 주조를 이용한 서포트링 제작에 관한 연구)

  • Jeongick Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2023
  • I am designing a research paper with the aim of studying hybrid vehicles. Hybrid vehicles, as the next-generation automobiles, feature a combination of internal combustion engines and battery engines, resulting in a revolutionary reduction in fuel consumption and harmful gas emissions compared to conventional vehicles. The electric motor in hybrid cars derives power from a high-voltage battery installed within the vehicle, which is recharged during vehicle motion. In contrast to traditional cars, which often experience energy losses due to idling caused by traffic congestion, hybrid systems optimize efficiency by skillfully managing the interplay between the internal combustion engine and the electric motor. This approach effectively addresses the inherent drawbacks of gasoline or diesel engines.Hybrid cars offer an array of benefits, including improved fuel efficiency, environmental friendliness, cost-effectiveness, and reduced noise emission. Consequently, they are progressively becoming a favored alternative among a growing number of individuals. This research endeavor has the potential to contribute towards curbing environmental pollution and dedicating efforts to future automotive research.

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

Development of Smart ICT-Type Electronic External Short Circuit Tester for Secondary Batteries for Electric Vehicles (전기자동차용 2차전지를 위한 스마트 ICT형 전자식 외부 단락시험기 개발)

  • Jung, Tae-Uk;Shin, Byung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Recently, the use of large-capacity secondary batteries for electric vehicles is rapidly increasing, and accordingly, the demand for technologies and equipment for battery reliability evaluation is increasing significantly. The existing short circuit test equipment for evaluating the stability of the existing secondary battery consists of relays, MCs, and switches, so when a large current is energized during a short circuit, contact fusion failures occur frequently, resulting in high equipment maintenance and repair costs. There was a disadvantage that repeated testing was impossible. In this paper, we developed an electronic short circuit test device that realizes stable switching operation when a large-capacity power semiconductor switch is energized with a large current, and applied smart ICT technology to this electronic short circuit stability test system to achieve high speed and high precision through communication with the master. It is expected that the inspection history management system based on data measurement, database format and user interface will be utilized as essential inspection process equipment.

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.

Analysis of Energy Consumption Efficiency for a Hybrid Electric Vehicle According to the Application of LPG Fuel in WLTC Mode (WLTC 모드에서의 LPG 연료 적용에 따른 하이브리드 자동차 에너지소비효율 분석)

  • Jun Woo, Jeong;Seungchul, Woo;Seokjoo, Kwon;Se-Doo, Oh;Youngho, Seo;Kihyung, Lee
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.195-202
    • /
    • 2022
  • Recently, the global automobile market is rapidly changing from internal combustion engine vehicles to eco-friendly vehicles including electric vehicles. Among eco-friendly vehicles, LPG vehicles are low in fine dust and are suggested as a realistic way to replace diesel vehicles. In addition, it is more economical than gasoline in its class, showing a cost-saving effect. In Korea, the business of converting gasoline into LPG is active. Research is being conducted to apply this to hybrid vehicles. In this study, the difference in energy consumption efficiency was analyzed when LPG fuel was applied by selecting a 2-liter GDI hybrid electric vehicle. The operation of the hybrid system according to various driving characteristics was confirmed by selecting the WLTC mode. As a result, it was confirmed that the BSFC was about 5% lower than that of gasoline fuel when using LPG fuel. This is due to the active operation of the motor while driving. Optimization is required as battery consumption increases from an energy perspective.

Modeling and an Efficient Com bined Control Strategy for Fuel Cell Electric Vehicles

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Choi, Joo-Yeop;Choy, Ick;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1629-1633
    • /
    • 2004
  • In this paper, we first implement the simulation environment to investigate the efficient control method of a Fuel Cell Electric Vehicle (FCEV) system with battery. The subsystems of a FCEV including the fuel cell system, the electric motor (including the power electronics) and the tansmission (reduction gear), and the auxiliary power source (battery) are mathematically fomulated and coded using the Matlab/Simulink software. Some examples are given to show the capabilities of the modeled system and d a basic control strategy is examined for the economic energy distribution between the fuel cell and the auxiliary power source. It is illustrated by simulations that the actual vehicle velocity follows the given desired velocity pattern while both SOC control and power distribution control are being performed.

  • PDF

Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application (전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.