• Title/Summary/Keyword: Battery Capacity

Search Result 1,194, Processing Time 0.035 seconds

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성)

  • Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • Sin, Yong-Seung;Jang, Hyeon-Sik;Im, Jae-Yeong;Im, Se-Yun;Lee, Jong-Un;Lee, Jae-Hyeon;Wang, Junyi;Heo, Geun;Kim, Tae-Geun;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

The Electrochemical Characteristics of Surface-modified Carbonaceous Materials by tin Oxides and Copper for Lithium Secondary Batteries

  • Lee, Joong-Kee;Ryu, D.H.;Shul, Y.G.;Cho, B.W.;Park, D.
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.170-177
    • /
    • 2001
  • Lithium intercalated carbon (LIC) are basically employed as an anode for currently commercialized lithium secondary batteries. However, there are still strong interests in modifying carbon surface of active materials of the anode because the amount of irreversible capacity, charge-discharge capacity and high rate capability are largely determined by the surface conditions of the carbon. In this study, the carbonaceous materials were coated with tin oxide and copper by fluidized-bed chemical vapor deposition (CVD) method and their coating effects on electrochemical characteristics were investigated. The electrode which coated with tin oxides gave the higher capacity than that of raw material. Their capacity decreased with the progress of cycling possibly due to severe volume changes. However, the cyclability was improved by coating with copper on the surface of the tin oxides coated carbonaceous materials, which plays an important role as an inactive matrix buffering volume changes. An impedance on passivation film was decreased as tin oxides contents and it resulted in the higher capacity.

  • PDF

Electrochemical Characteristics of $LiMn_{2}O_{4}$/Lithium Cells in Organic Electrolyte (유기전해액 $LiMn_{2}O_{4}$/Lithium 전지의 전기화학적 특성)

  • 임정환;도칠훈;문성인;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.371-374
    • /
    • 2000
  • The electrochemical properties of LiM $n_2$ $O_4$as a cathode and an anode for the lithium secondary battery were evaluated. When LiM $n_2$ $O_4$ material was used as the cathode with the current collector of aluminum, the 1st specific capacity and the 1st Ah efficiency in LiM $n_2$ $O_4$/lithium cell were 123 mAh/g and 91.7%, respectively The anodic properties of LiM $n_2$ $O_4$ material was also evaluated in the LiM $n_2$ $O_4$/1ithium cell with the current collector of copper. It showed that the LiM $n_2$ $O_4$ was useful as the anode for the lithium secondary battery. During the 1st discharge, a potential plateau was observed at the potential of 0.3 $V_{Li}$ Li+/. The 1st specific charge capacity and the 1st specific discharge capacity were 790 mAh/s and 362 mAh/g, respectively. Therefore, the 1st Ah efficiency was 46%. The discharge capacity was gradually faded with the charge-discharge cycling to about 50th cycles. Thereafter, the discharge capacity was stabilized to about 110 mAh/g.

  • PDF

Development of the Emergency Generator Equipments Diagnosis System (비상용 발전설비 진단시스템 개발)

  • Lee, Sang-Cheol;Na, Chae-Dong;Lee, Seong-Beom;Yoo, Jae-Moon;Choi, Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2590-2593
    • /
    • 1999
  • This paper describes the development of Emergency Generator Equipments Diagnosis System for monitoring generator equipments and battery system. This system is capable of measuring on up to 20 separate sites of generator, engine and periphral equipment's. Battery system also capable of measure the setting time, float and discharge voltage of up to 240 cells in a single installation, and has the memory capacity to store battery's alarm data information on up to 200 separate sites. This system are easy to maintain and attain cost effectively, so that prepared for meeting the customer's service needs immediately. The system is additionally programmed with a each model, that will enable to accurately determine the generator equipments and remain battery capacity in a system following a short discharge test. It is also equipped with remote interrogation and control facilities.

  • PDF

Photovoltaic System Operation Optimal Technique Considering Climate Condition and Residential Loads Pattern (기후조건 및 실부하패턴을 고려한 태양광 시스템 최적 운전기법)

  • Moon, Hee-Sung;Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Yeong-Guk;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2385-2390
    • /
    • 2009
  • Based on the detailed analysis of output characteristics of PV array and residential load usage pattern, a design method to calculate optimal battery capacity for stand-alone PV generation systems is proposed. And also, according to power flow Actual irradiation and temperature data are analyzed to compose a PV array simulator and also six representative home appliances are electrically modeled for load simulator, along with 24hours usage pattern. The surplus and insufficient power can be calculated from the proposed simulation platform, so that selection of an optimal battery capacity can be possible. The theoretical analysis and design process will be explained, along with informative simulation results.

Optimization Study on Polymerization of Crosslink-type Gel Polymer Electrolyte for Lithium-ion Polymer Battery (리튬이온폴리머전지용 가교형 겔폴리머전해질의 중합조건 최적화 연구)

  • Kim, Hyun-Soo;Moon, Seong-In;Kim, Sang-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2005
  • In this work, polymerization conditions of the gel polymer electrolyte (GPE) were studied to obtain better electrochemical performances in a lithium-ion polymer battery. When the polymerization temperature and time of the GPE were 70$^{\circ}C$ and 70 min, respectively, the lithium polymer battery showed excellent a rate capability and cycleability. The TMPETA (trimethylolpropane ethoxylate triacrylate)/TEGDMA (triethylene glycol dimethacrylate)-based cells prepared under optimized polymerization conditions showed excellent rate capability and low-temperature performances: The discharge capacity of cells at 2 Crate showed 92.1 % against 0.2C rate. The cell at -20 $^{\circ}C$ also delivered 82.4 % of the discharge capacity at room temperature.

Determination of the HESS Capacity for Mitigation of Fluctuation of Wind Farm Output under Consideration of Disconnecting Wind Farm (풍력발전단지 탈락 시를 고려한 단지 출력 변동 저감을 위한 HESS의 용량 산정)

  • Kim, SeongHyun;Ko, JiHan;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.388-389
    • /
    • 2013
  • This paper presents the method for the fluctuation smoothing control by using relaxation time variable control of battery. When the output power of wind farm is changed suddenly, it is necessary to control the output power of wind farm. The smoothing relaxation time is changed within limits of battery output power. Using the hybrid energy storage system (HESS) combined with battery energy storage system and electric double layer capacitor, it is possible to control the output power of wind farm. The capacity of battery is determined by considering the case of the disconnecting wind farm from the grid. To verify the proposed method, simulations are carried out by using PSCAD/EMTDC with actual data of wind farm in the Jeju Island.

  • PDF

Charge/discharge Properties of Flyash as a function of Electrolyte for Lithium Rechargeable Battery (전해질 종류에 따른 Flyash의 리튬 2차전지의 충방전 특성)

  • 송희웅;김종욱;이경섭;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.362-365
    • /
    • 1999
  • The electrochemical properties of flyash obtained from combustion of fuel in fossil power plants and their performance as anode material of secondary battery have been investigated Various flysh pellets molded at various molding pressure have been used as anode lithium secondary battery. The best Performance was achieved when flyash pellet molded at pressure of 400kgf/$\textrm{cm}^2$ is utilized, that is, charge capacity of 300kgf/$\textrm{cm}^2$ and Coulombic efficiency of larger than 95% have been achieved. In addition, this battery exhibited good cycling performance. Considering these results, we predicted that utilization of the flyash as anode material and polyaniline conducting polymer as cathode material in a secondary will show capacity of 300mAh/g and Coulombic efficiency of higher than 95%.

  • PDF