• Title/Summary/Keyword: Battery Capacity

Search Result 1,203, Processing Time 0.028 seconds

A study on the Active Material FeS2 in Battery Fabricated by Mechanical Alloying

  • Jung Woo-Hyun;Ahn In-Shup;Ahn Hyo-Jun;Bae Sung-Yeal;Sung Tek-Kyoung;Kim Tae-Bum;Kim You-Young
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • As the electrodes of secondary battery are made with sulfur compounds, excellent electrode system of environmental non-toxicity, high specific energy density and low material cost can be obtained. In this study, the $FeS_2$ fine compound powders for active material in the battery were synthesized by mechanical alloying. Fine Fe-53.5 wt.%S powders of 450 nm of mean size were fabricated by mechanical alloying for 60 hours at the horizontal attritor. As the mechanical alloying time increases, particle size of Fe-53.5 wt.%S was decreased and steady state of Fe-53.5 wt.%S compound powders was obtained at 30 hours. Fe-53.5 wt.%S cathode shows the excellent discharge capacity (1011 mAh/g).

Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화)

  • Lee, Dong Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.397-403
    • /
    • 2013
  • The demand for eco-friendly and higher fuel economy vehicles has helped develop eco-friendly and fuel-efficient vehicles such as hybrid vehicles. In a hybrid vehicle, the change in the battery charge after driving should be added to the fuel consumption as the equivalent fuel usage based on its own characteristics. Thus, the fuel efficiency of a hybrid vehicle cannot be improved simply by increasing the battery capacity. In this study, I attempt to improve the total fuel economy of a hybrid vehicle, including the equivalent fuel consumption, by modeling a fuel cell hybrid vehicle using Matlab Simulink, analyzing the usage zone of the fuel cell with the existing control strategy, and optimizing the power distribution of the battery and fuel cell in the main usage zone of the fuel cell.

Synthesis LiFePO4- poly(sodium 4-styrenesulfonate) composite cathode material for rechargeable lithium battery by hydrothermal method

  • Hiep, Nguyen Van;Wang, Wan Lin;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.137.2-137.2
    • /
    • 2011
  • Poly (sodium 4-styrenesulfonate) (PSS) is ionomer based on polystyrene that is electrical conductivity and isoviscosity. LiFePO4 has been a promising electrode material however its poor conductivity limits practical application. To enhance the electronic conductivity of LiFePO4, in this study we prepared LiFePO4- PSS composite by the hydrothermal method. LiFePO4 was heated at $170^{\circ}C$ for 12h and then different wt% PSS (0%, 2.91%, 4.75%, 7.36%, 10%) are added to LiFePO4 and milled at 300rpm for 10h. And then the obtained powders were subsequently heated at $500^{\circ}C$ for 1h under argon flow. The cathode electrode were made from mixtures of LiFePO4-PSS: SP-270- PVDF in a weighting ratio 75%: 25%:5%. The electrochemical properties of LiFePO4- PSS/Li batteries were analyzed by cyclic voltammetry and charge/discharge tests. LiFePO4-C/Li battery with 4.75 wt% PSS displays discharge capacity of 128 mAh g-1 at room temperature that is considerably higher than pure LiFePO4/Li battery ( 113.48 mAhg-1).

  • PDF

Electrochemical Performances of the Fluorine-Substituted on the 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 Cathode Material

  • Kim, Seon-Min;Jin, Bong-Soo;Park, Gum-Jae;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.87-93
    • /
    • 2014
  • The fluorine-substituted $0.3Li_2MnO_3{\cdot}0.7Li[Mn_{0.60}Ni_{0.25}Co_{0.15}]O_{2-x}F_x$ cathode materials were synthesized by using the transition metal precursor, $LiOH{\cdot}H_2O$ and LiF. This was to facilitate the movement of lithium ions by forming more compact SEI layer and to reduce the dissolution of transition metals. The $0.3Li_2MnO_3{\cdot}0.7Li[Mn_{0.60}Ni_{0.25}Co_{0.15}]O_{2-x}F_x$ cathode material was sphere-shaped and each secondary particle had $10{\sim}15{\mu}m$ in size. The fluorine-substituted cathodes initially delivered low discharge capacity, but it gradually increased until 50th charge-discharge cycles. These results indicated that fluorine substitution gave positive effects on the structural stabilization and resistance reduction in materials.

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

PEBB Based Bi-directional Rapid Charging System for EV Traction Battery

  • Kang, Taewon;Chae, Beomseok;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.323-324
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Prediction of Demand for Photovoltaic Power Plants for Electric Vehicle Operation (전기자동차 운행을 위한 태양광발전소 수요 예측)

  • Choi, Hoi-Kyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.35-44
    • /
    • 2020
  • Currently, various policies regarding ecofriendly vehicles are being proposed to reduce carbon emissions. In this study, the required areas for charging electric vehicle (EV) batteries using electricity produced by photovoltaic (PV) power plants were estimated. First, approximately 2.4 million battery EVs, which represented 10% of the total number of vehicles, consume approximately 404 GWh. Second, the power required for charging batteries is approximately 0.3 GW, and the site area of the PV power plant is 4.62 ㎢, which accounts for 0.005% of the national territory. Third, from the available sites of buildings based on the region, Jeju alone consumes approximately 0.2%, while the rest of the region requires approximately 0.1%. Fourth, Seoul, which has the smallest available area of mountains and farmlands, utilizes 0.34% of the site for PV power plants, while the other parts of the region use less than 0.1%. The results of this study confirmed that the area of the PV power plant site for producing battery-charging power generated through the supply of EVs is very small. Therefore, it is desirable to analyze and implement more specific plans, such as efficient land use, forest damage minimization, and safe maintenance, to expand renewable energy, including PV power.

Impedance Estimation for Lithium Secondary Battery According to 1D Thermal Modeling (리튬 2차 전지의 1차원 열적 특성을 고려한 임피던스예측)

  • Lee, Jung-Su;Lim, Geun-Wook;Kim, Kwang-Sun;Cho, Hyun-Chan;Yoo, Sang-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.13-17
    • /
    • 2008
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a thermal model that estimate the impedance of battery by experiment & simulation. In this one-dimensional model, Seven governing equations are made to solve seven variables c, $c_s,\;\Phi_1,\;\Phi_2,\;i_2$, j and T. The thermal model parameters used in this model have been adjusted according to the experimental data measured in the laboratory. The result(Voc, Impedance) of this research can be used in BMS(Battery Management System), so an efficient method of using battery is developed.

  • PDF

Charge/discharge Properties of $Li_2O-P_2O-V_2O_5$ Glasses as a Cathode Material for Lithium Rechargeable Battery (리튬 이차전지의 정극 물질로서 $Li_2O-P_2O-V_2O_5$ 유리의 충방전 특성)

  • 송희웅;구할본;손명모;이헌수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.383-386
    • /
    • 1999
  • The importance of rechargeable lithium cells has been emphasized. So a large variety of materials has been discovered and evaluated for use as reversible cathodes and electroyltes. This paper examines the charge/discharge properties and the charge/discharge cycling life of Li$_2$O-P$_2$O-V$_2$O$_{5}$Li cells. In audition, DTA tests were carried out on Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass. As a result the best performance was achieved when 0.3Li$_2$O-0.1P$_2$O$_{5}$-0.6V$_2$O$_{5}$Li cells was mixed with SP270. that is discharge capacity of 240mAh/g have been achieved. In addition this battery exhibited good cycling performance. Considering these results we expected utilization of the Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass as a cathode material in a secondary battery.y battery.

  • PDF