• Title/Summary/Keyword: Battery Capacity

Search Result 1,194, Processing Time 0.024 seconds

Thermal Analysis of a Battery Cooling System with Aluminum Cooling Plates for Hybrid Electric Vehicles and Electric Vehicles (알루미늄 냉각 판을 이용한 하이브리드/전기차용 배터리 냉각시스템의 수치적 연구)

  • Baek, Seungki;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The battery cells in lithium-ion battery pack assembled with high-capacity and high-power pouch cells, are commonly cooled with thin aluminum cooling plates in contact with the cells. For HEV/EV lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. Thin aluminum cooling plates are cooled by cold plate with coolant flow paths. In this study, the effect of the battery cooling system design including aluminum cooling plate thickness and various position of cold plate on the cooling performance are investigated by using finite element methods (FEM). Optimal cooling plate and cold plate design are proposed for improving the uniformity in temperature distributions as well as lowering average temperature for the cells with large capacities based on the simulation results.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Development of the High Power Battery Charging System for Portable Energy Banks (이동식 에너지 뱅크용 대용량 배터리 충전 시스템의 개발)

  • Kim, Soo-Yeon;Kim, Dong-Ok;Lee, Jung-Hwan;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.491-499
    • /
    • 2021
  • Batteries are widely used for energy storage, such as ESS(Energy Storage System), electric vehicles, electric aircraft, and electric powered ships. Among them, a submarine uses a high power battery for an energy storage. When the battery of a submarine is discharged, a diesel generator generates AC power, and then AC/DC power converter change AC power to DC power for charging the battery. Therefore, in order to lower the current capacity of the diesel generator, it is necessary to use an AC/DC converter with a high input power factor. And, a power converter with a large power capacity must have high stability because it can lead to a major accident when a failure occurs. However, the control algorithm using the traditional PI controller is difficult to satisfy stability and dynamic characteristics. In this paper, we design the high power AC/DC converter with high input power factor for battery charging systems. And, we propose a stable control algorithm. The validity of the proposed method is verified through simulation and experiments.

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

Design of Additives and Electrolyte for Optimization of Electrode Characteristics of Ni-MH Secondary Battery at Room and Low Temperatures (Ni-MH 2차 전지의 상온 및 저온 전극특성 최적화를 위한 첨가제 및 전해질 설계)

  • Yang, D.C.;Park, C.N.;Park, C.J.;Choi, J.;Sim, J.S.;Jang, M.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.365-373
    • /
    • 2007
  • We optimized the compositions of electrolyte and additives for anode in Ni-MH battery to improve the electrode characteristics at ambient and low temperatures using response surface method(RSM). Among various additives for anode, PTFE exhibited the greatest influence on the discharge capacity of the anode. Through response optimization process, we found the optimum composition of the additives to exhibit the greatest discharge capacity. When the amount of additives was too small, the anode was degraded with time due to the low binding strength among alloy powders and the resultant separation of powders from the current collector. In contrast, the addition of large amount of the additives increased in the resistance of the electrode. In addition, the discharge capacity of the anode at $-18^{\circ}C$ increased with decreasing the concentration of KOH, NaOH and LiOH in design range of electrolyte. The resistance and viscosity of electrolyte appear to affect the discharge capacity of the anode at low temperature.

The Study on the Controller for Supplying Stably Power with a Stand-Alone Photovoltaic/Wind/Small Generator Hybrid Power Generation System (독립형 태양광, 풍력, 소형발전기 복합시스템에서 안정적인 전력공급을 위한 컨트롤러에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2012
  • The object of this paper is the controller for supplying stably power in a separate house in which a hybrid electrical storage system with a stand-alone photovoltaic/wind power generation system and a small generator is applied. In the photovoltaic/wind hybrid power system used in the separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. In particular, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to estimate the number of sunless days. Accordingly, it is preferable to build the electrical storage system that numbers of sunshineless days are to be controlled and a shortage amount of the power generation capacity is to be handled by a small generator system. In order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage. Such system needs components including inverters for photovoltaic and wind power generation system, batteries and controllers for automatically driving the small generator, based upon the nature of the stand-alone house, and it is preferable to use the controller having a simpler and higher stability by adopting the all-in-one scheme to facilitate its maintenance.

Multiple linear regression model-based voltage imbalance estimation for high-power series battery pack (다중선형회귀모델 기반 고출력 직렬 배터리 팩의 전압 불균형 추정)

  • Kim, Seung-Woo;Lee, Pyeong-Yeon;Han, Dong-Ho;Kim, Jong-hoon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, the electrical characteristics with various C-rates are tested with a high power series battery pack comprised of 18650 cylindrical nickel cobalt aluminum(NCA) lithium-ion battery. The electrical characteristics of discharge capacity test with 14S1P battery pack and electric vehicle (EV) cycle test with 4S1P battery pack are compared and analyzed by the various of C-rates. Multiple linear regression is used to estimate voltage imbalance of 14S1P and 4S1P battery packs with various C-rates based on experimental data. The estimation accuracy is evaluated by root mean square error(RMSE) to validate multiple linear regression. The result of this paper is contributed that to use for estimating the voltage imbalance of discharge capacity test with 14S1P battery pack using multiple linear regression better than to use the voltage imbalance of EV cycle with 4S1P battery pack.

Electrochemical properties of AZ31, AZ61 magnesium alloy electrodes for eco-friendly Magnesium-air battery (친환경 마그네슘-공기 전지용 AZ31, AZ61 마그네슘 합금 전극의 전기화학적 특성)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.17-22
    • /
    • 2021
  • Eco-friendly magnesium-air battery is a kind of metal-air battery known as a primary battery with a very high theoretical discharge capacity. This battery is also called a metal-fuel cell from the viewpoint of using oxygen in the atmosphere as a cathode active material and magnesium alloy as a fuel. Since battery performance is determined by the properties of the magnesium alloy used as a anode, more research and development of the magnesium alloy electrode as a anode material are required in order to commercialize it as a high-performance battery. In this study, the commercialized magnesium alloys(AZ31, AZ61) were selected and then electrochemical measurements and discharge test were conducted. Electrochemical properties of magnesium alloys were investigated by OCP changes, Tafel parameters and CV measurement, and the feasibilities of AZ61 alloy with excellent discharge capacity(1410mAhg-1) as electrode materials were evaluated through CC discharge experiments.

MINIMUM BATTERY ENERGY IN THE SURVIVAL MODE FOR THE COMS SPACECRAFT

  • Koo, Ja-Chun;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.96-99
    • /
    • 2008
  • The MRE (Monitoring Reconfiguration Electronics) board included inside the SCU (Spacecraft Computer Unit) in the COMS (Communication, Ocean and Meteorological Satellite) spacecraft is used to monitor the battery voltage and to detect a battery under voltage (low battery capacity) or a battery overvoltage (overcharge). In case of alarm detection, a reconfiguration is initiated by the MRE board. The MRE configures the overall spacecraft in the survival mode to protect the Li-Ion (lithium ion) battery from overcharge and over discharge. For the EPS (Electrical Power Subsystem) point of view, the survival mode can be trigged from hardware wired thresholds. The aim of this paper to provide and to justify the low and high threshold levels which are associated to the MRE battery voltage monitoring. The MRE trig guarantees minimum battery energy to available for the required 48 hours autonomy duration of the spacecraft after MRE trig in the survival mode.

  • PDF