• 제목/요약/키워드: Battery Application

검색결과 497건 처리시간 0.029초

나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가 (Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties)

  • 박수진;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Cellular Phone 및 IMT-2000용 초정밀 사각 밧데리 케이스 성형공정 해석 (FE Analysis of The Forming Process of The High Precision Rectangular Battery Case used in Cellular Phone and IMT-2000)

  • 김홍주;구태완;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.778-782
    • /
    • 2000
  • Deep drawing and ironing are the major process used today in manufacturing of battery case used in cellular phone and IMT-2000 from aluminum. The same technology is utilized in manufacturing of steel or aluminum rectangular cans for components of medical instrument, portable PC, walkman and so on. Most of these processes require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of theses processes are relatively less known. Thus, it is expected that process simulations using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations with the cellular phone and IMT-2000. A commercially avaliable finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using Deep Neural Network)

  • Khan, Asad;Ko, Young-hwi;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.70-72
    • /
    • 2019
  • For the safe and reliable operation of Lithium-ion batteries in Electric Vehicles (EVs) or Energy Storage Systems (ESSs), it is essential to have accurate information of the battery such as State of Charge (SOC). Many kinds of different techniques to estimate the SOC of the batteries have been developed so far such as the Kalman Filter. However, when it is applied to the multiple number of batteries it is difficult to maintain the accuracy of the estimation over all cells due to the difference in parameter value of each cell. Moreover the difference in the parameter of each cell may become larger as the operation time accumulates due to aging. In this paper a novel Deep Neural Network (DNN) based SOC estimation method for multi cell application is proposed. In the proposed method DNN is implemented to learn non-linear relationship of the voltage and current of the lithium-ion battery at different SOCs and different temperatures. In the training the voltage and current data of the Lithium battery at charge and discharge cycles obtained at different temperatures are used. After the comprehensive training with the data obtained with a cell resulting estimation algorithm is applied to the other cells. The experimental results show that the Mean Absolute Error (MAE) of the estimation is 0.56% at 25℃, and 3.16% at 60℃ with the proposed SOC estimation algorithm.

  • PDF

자율섭취기능을 갖는 바퀴구동형 생체모방로봇 개발 (Development of a Biomimetic Wheeled Robot with Autonomous Eating Functionality)

  • 조익진;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.573-579
    • /
    • 2006
  • Most of the recently developed robots are human friendly robots which imitate an animal or human such as entertainment robot, biomimetic robot and humanoid robot. Interest in these robots is increased because the social trend is focused on health, welfare, and graying. By these social backgrounds, robots become more human friendly and suitable or home or personal environment. The more biomimetic robots resemble living creature, the more human feels familiarity. Human feels close friendship not only when feeding a pet, but also when watching a pet having the food. Most of entertainment robots and pet robots use internal-type batteries and have a self-recharging function. Entertainment robots and pet robots with internal-type batteries are not able to operate during charging the battery. So far there have been a few robots that do not depend on an internal battery. However, they need a bulky energy conversion unit and a slug or foods as an energy source, which is not suitable for home or personal application. In this paper, we introduce a new biomimetic entertainment robot with autonomous eating functionality, called EPRO-1(Eating Pet RObot version 1). The EPRO-1 is able to eat a food (a small battery), by itself and evacuate. We describe the design concept of the autonomous eating mechanism of the EPRO-1, characteristics of sub-parts of the manufactured mechanism and its control system.

Poly(meta-phenylene isophthalamide)를 이용한 리튬이차전지용 PE 분리막의 고내열화 연구 (A Study on the Improvement of the Thermal Stability of PE Separator for Lithium Secondary Battery Application Using Poly(meta-phenylene isophthalamide))

  • 박민아;라병호;배진영;김병현;최원근
    • 폴리머
    • /
    • 제37권1호
    • /
    • pp.22-27
    • /
    • 2013
  • 본 연구에서는 기존의 이차전지용 폴리에틸렌(PE) 분리막에 poly(meta-phenylene isophthalamide) (Nomex)를 코팅함으로써 뛰어난 내열성을 가진 coated PE 분리막을 제조하였다. 다양한 Nomex 용액 조성과 PE 분리막 코팅 조건에 따라 제조한 분리막의 기계적 및 열적 특성을 열 노출 테스트와 TMA를 이용하여 측정하였고 제조된 코팅 분리막은 기존의 PE 분리막보다 향상된 열 수축률 및 기계적 성질을 보였다. 코팅 분리막의 전기화학적 성질은 이온전도도, 순환 전위-전류법, 충방전 사이클 테스트 등을 이용해 측정하였다.

유기전해액 $LiMn_{2}O_{4}$/Lithium 전지의 전기화학적 특성 (Electrochemical Characteristics of $LiMn_{2}O_{4}$/Lithium Cells in Organic Electrolyte)

  • 임정환;도칠훈;문성인;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2000
  • The electrochemical properties of LiM $n_2$ $O_4$as a cathode and an anode for the lithium secondary battery were evaluated. When LiM $n_2$ $O_4$ material was used as the cathode with the current collector of aluminum, the 1st specific capacity and the 1st Ah efficiency in LiM $n_2$ $O_4$/lithium cell were 123 mAh/g and 91.7%, respectively The anodic properties of LiM $n_2$ $O_4$ material was also evaluated in the LiM $n_2$ $O_4$/1ithium cell with the current collector of copper. It showed that the LiM $n_2$ $O_4$ was useful as the anode for the lithium secondary battery. During the 1st discharge, a potential plateau was observed at the potential of 0.3 $V_{Li}$ Li+/. The 1st specific charge capacity and the 1st specific discharge capacity were 790 mAh/s and 362 mAh/g, respectively. Therefore, the 1st Ah efficiency was 46%. The discharge capacity was gradually faded with the charge-discharge cycling to about 50th cycles. Thereafter, the discharge capacity was stabilized to about 110 mAh/g.

  • PDF

가파도 마이크로그리드에서의 풍력발전 연계를 위한 2MVA급 배터리 에너지 저장시스템(BESS) 적용 및 실증 (The Application and Verification of the 2MVA Battery Energy Storage System(BESS) with Wind-turbine in Micro-grid of Gapado, Jeju)

  • 김승모;오승진;이종학;김태형;권병기;안재민;진경민;최창호
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.303-311
    • /
    • 2014
  • This paper shows the test result of 2MVA BESS(Battery Energy Storage System) with wind-turbine in micro-grid of the Gapado. To implement of micro-grid with BESS, characteristics of generator and customer load in grid are considered. Also, to operate of 2-parallel PCU(Power Conversion Unit) in BESS, the droop control is adopted with operating mode of grid independent. Performances of BESS with wind-turbine were verified by analysis of power quality such as voltage harmonics, ratio of voltage and frequency regulation, and by measurement of waveform such as output voltage and current.

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7La3Zr2O12 Solid Electrolytes

  • Ahmed Tarif;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.408-418
    • /
    • 2023
  • In this study, we synthesized and characterized garnet-type Li7-xAlxLa3Zr2-(5/4)yNbyO12 (LALZN) solid electrolytes for all-solid-state battery applications. Our novel approach focused on enhancing ionic conductivity, which is crucial for battery efficiency. A systematic examination found that co-doping with Al and Nb significantly improved this conductivity. Al3+ and Nb5+ ions were incorporated at Li+ and Zr4+ sites, respectively. This doping resulted in LALZN electrolytes with optimized properties, most notably enhanced ionic conductivity. An optimized mixture with 0.25 mol each of Al and Nb dopants achieved a peak conductivity of 1.32 × 10-4 S cm-1. We fabricated symmetric cells using these electrolytes and observed excellent charge-discharge profiles and remarkable cycling longevity, demonstrating the potential for long-term application in battery systems. The garnet-type LALZN solid electrolytes, with their high ionic conductivity and stability, show great potential for enhancing the performance of all-solid-state batteries. This study not only advances the understanding of effective doping strategies but also underscores the practical applicability of the LALZN system in modern energy storage solutions.

IMT2000을 위한 혼성마이크로 동력원 개발에 관한 연구 (A Study on the Development of Hybrid Micro Power Sources for the IMT2000)

  • 김일송;윤명중;김정한;주훈
    • 전력전자학회논문지
    • /
    • 제10권2호
    • /
    • pp.203-210
    • /
    • 2005
  • IMT2000과 같은 휴대용 무선통신 시스템을 위한 혼성마이크로 동력원에 대한 연구를 수행하였다. 혼성마이크로 동력원은 태양전지, 슈퍼커패시터, 리튬이온 전지로 이루어져 있다. 주기적인 펄스성 부하에 대응하기 위하여, 슈퍼 커패시터가 리튬이온 전지와 병렬로 연결되어 펄스전류를 흡수한다. 태양전지는 배터리에 전류를 공금하며, 최대전력점에서 동작하도록 제어된다. 펄스성 부하에도 적용될 수 있는 최대전력점 추적기법이 소개되며, 실험을 통해서 완벽한 추적성능을 입증하였다. 혼성마이크로 동력원들 간의 매칭을 위한 제어기 설계 기법이 제시되며, 실험을 통해 성능을 입증하였다.