• Title/Summary/Keyword: Bathymetric

Search Result 97, Processing Time 0.035 seconds

Development of Bathymetric Data for Ocean Numerical Model Using Sea-Floor Topography Data: BADA Ver.1 (수심측량자료를 사용한 해양수치모델 전용 수심 데이터 제작: BADA Ver.1)

  • Yoo, Sang Cheol;Mun, Jong Yoon;Park, Woong;Seo, Gwang Ho;Gwon, Seok Jae;Heo, Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • Recently, the importance of highly accurate bathymetric data is greatly emphasized by the increased use of the ocean numerical models and research results in major areas such as ocean forecasting and natural disaster. There are domestic bathymetric data mainly used in ocean numerical models of Choi et al.(2002) and Seo (2008), but the production year is old and the data was created on the basis of nautical charts. Nautical charts are made for the purpose of navigation and based on the minimum depth from bathymetric data, so there is a limitation to reproduce the actual submarine topography. Korea Hydrographic and Oceanographic Agency (KHOA) produces nautical charts every year through continuous bathymetric survey, but no bathymetric data for numerical models have been produced. In this study, using the raw bathymetric survey data, we built an exclusive bathymetric dataset (BADA Ver.1) for ocean numerical models and compared it with published bathymetric data.

Topographic Analysis of Bathymetry Data Acquired from the KR1 Area of Northeastern Pacific : Application of Wavelet-based Filter (북동태평양 KR1 광구 수심자료의 지형분석 : 웨이브렛 필터의 적용)

  • Jung, Mee-Sook;Kim, Hyun-Sub;Park, Cheong-Kee
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.303-310
    • /
    • 2007
  • 2-D wavelet analysis is applied to bathymetric data from the KR1 area of Korea Deepsea Mining Area. The wavelet analysis is one of the quantitative methods to analyze the topography. The wavelet allows us to create filters to select for topography in a continuous variety of shapes, sizes, and orientation. The 2-D Linear B-spline filter, 100 BS and 100 NF, is convolved with bathymetric data to identify the location of abyssal hills and abyssal troughs in bathymetry. In addition, the 2-D derivative of Cubic B-spline filter, 60 BS and 60 NF, is applied to bathymetric data to find the slope of abyssal hill in bathymetry. These filters were rotated $5^{\circ}$ counterclockwise from NS to match the dominant orientation of seafloor lineament. Both filters result in good match with abyssal hills, troughs, and slopes. This method can apply to fault, fold, and other lineament structures description with variable size. The result of application shows that wavelet analysis of bathymetric data could be used with fundamental data of geophysical analysis.

Detection of Seabed Rock Using Airborne Bathymetric Lidar and Hyperspectral Data in the East Sea Coastal Area

  • Shin, Myoung Sig;Shin, Jung Il;Park, In Sun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • The distribution of seabed rock in the coastal area is relevant to navigation safety and development of ocean resources where it is an essential hydrographic measurement. Currently, the distribution of seabed rock relies on interpretations of water depth data or point based bottom materials survey methods, which have low efficiency. This study uses the airborne bathymetric Lidar data and the hyperspectral image to detect seabed rock in the coastal area of the East Sea. Airborne bathymetric Lidar data detected seabed rocks with texture information that provided 88% accuracy and 24% commission error. Using the airborne hyperspectral image, a classification result of rock and sand gave 79% accuracy, 11% commission error and 7% omission error. The texture data and hyperspectral image were fused to overcome the limitations of individual data. The classification result using fused data showed an improved result with 96% accuracy, 6% commission error and 1% omission error.

Digital Bathymetric and Topographic Data for Neighboring Seas of Korea (한국근해의 디지털 수심.표고 데이터베이스)

  • 최병호;김경옥;엄현민
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • An attempt has been made to establish digital bathymetric and topographic database in the form of grid point value(GPV) with an interval of one-minute horizontal space fur a wide region of seas adjacent to Korean Peninsula and also with an interval of one-arcsecond for coastal seas of Korean Peninsula. Especially terrestrial and marine data fusion work using mean sea level as vertical datum plane has been performed for one-arcsecond GPV dataset. It is believed that the compiled bathymetric dataset are reliable comparing with existing dataset so for and can be utilized for ocean simulations of intermediate scale process and also detailed coastal inundation process.

A Digital Bathymetric Model combining Multi Beam Echo Sounder and Sidescan Sonar

  • Park, Jo-Seph;Kim, Hik-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.330-330
    • /
    • 2002
  • The combination of Multi-Beam Echo Sounder swath bathymetry and high-resolution towed Sidescan sonar provides a powerful method of examination about hydrographic survey results. In this paper, we investigate the fast method of 3D bathymetric reconstruction with the Digital Sidescan sonar(Benthos SIS 1500) and Shallow Multi-Beam Echo Sounder(Reson Seabat 8125). The Seabat 8125 is a 455KHz high resolution focused Multibeam echo sounder(MBES) system which measures the relative water depth across a wide swath perpendicular to a vessel's track. The Benthos SIS1500 is a chirp(nominal fq. 200KHz) sonar which map the topographical features & sediment texture of ocean bottom using backscattered amplitude. We generates the very large 3D bathymetric texture mapping model with the Helical System's HHViewer and describes additional benefits of combining MBES and Sidescan Sonar imagery, the removal of geometric distortions in the model and a deterministic sounding noise.

  • PDF

Segmentation of Seabed Points from Airborne Bathymetric LiDAR Point Clouds Using Cloth Simulation Filtering Algorithm (항공수심라이다 데이터 해저면 포인트 클라우드 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Lee, Jae Bin;Jung, Jae Hoon;Kim, Hye Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • ABL (Airborne Bathymetric LiDAR) is an advanced survey technology that uses green lasers to simultaneously measure the water depths and oceanic topography in coastal and river areas. Seabed point cloud extraction is an essential prerequisite to further utilizing the ABL data for various geographic data processing and applications. Conventional seabed detection approaches often use return waveforms. However, their limited accessibility often limits the broad use of the bathymetric LiDAR (Light Detection And Ranging) data. Further, it is often questioned if the waveform-based seabed extraction is reliable enough to extract seabed. Therefore, there is a high demand to extract seabed from the point cloud using other sources of information, such as geometric information. This study aimed to assess the feasibility of a ground filtering method to seabed extraction from geo-referenced point cloud data by using CSF (Cloth Simulation Filtering) method. We conducted a preliminary experiment with the RIGEL VQ 880 bathymetric data, and the results show that the CSF algorithm can be effectively applied to the seabed point segmentation.

Effect of Sound Velocity on Bathymetric Data Aquired by EM120(multi-beam echo sounder) (EM120(multi-beam echo sounder)을 이용한 지형조사 시 적용되는 해수 중 음속 측정의 중요성; 수중음속 측정장비의 특성 비교)

  • Ham, Dong-Jin;Kim, Hyun-Sub;Lee, Gun-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.295-301
    • /
    • 2008
  • Bathymetric data collected using a multi-beam echo sounder during marine scientific survey is essential for geologic and oceanographic research works. Accurate measurment of sound velocity profile(SVP) in water-column is important for bathymetric data processing. SVP can vary at different locations during the survey undertaken for wide areas. In addition, an observational error can occur when different equipments(Sound Velocity Profiler, Conductivity Temperature Depth, eXpendable BathyThermograph) are used for measuring SVP at the same water column. In this study, we used an MB-system software to show changes in bathymetry caused by variation of SVP. The analyses showed that the sound velocity(SV) changes due to the depth and thickness of thermocline had more significant effects on the resulting bathymetric data than those of surface mixed layer. The observational errors between SVP measuring instruments did not cause much differneces in the processed bathymetric data. Bathymetric survey line is better to be established to the direction that the change of temperature can be minimize to reduce the variation of SVP during the data acquisition along the survey line.

Wave Reflection over an Arbitrarily Varying Topography

  • Cho, Yong-Sik;Lee, Changhoon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.39-44
    • /
    • 1997
  • As wind waves generated in deep water approach nearshore zone, they experience various physical phenomena caused by bathymetric variations, nonlinear interactions among different wave components and interferences with man-made coastal structures. Among these, the bathymetric variations may play a significant role in the change of wave climate. The accurate calculation of reflection and transmission coefficients of incident waves over a bottom topography is indispensible for the proper and economical design of coastal structures. (omitted)

  • PDF

An Improvement of Efficiently Establishing Topographic Data for Small River using UAV (UAV를 이용한 소하천 지형자료 구축에 관한 효율성 제고)

  • Yeo, Han Jo;Choi, Seung Pil;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.3-8
    • /
    • 2016
  • Due to the recent technical development and the enhancement of image resolution, Unmanned Airborne Vehicles(UAVs) have been used for various fields. A low altitude UAV system takes advantage of taking riverbed imagery at small rivers as well as land surface imagery on the ground. The bathymetric data are generated from the low altitude UAV system. The accuracy of the data is analyzed along water depths, comparing GPS observations and a DSM generated from UAV images. It is found that the depth accuracy of the geospatial data below 50 cm depth of water satisfies the regulation(${\pm}10cm$ spatial accuracy) of bathymetric surveying. Therefore this research shows that the geospatial data generated from UAV images at shallow regions of rivers can be used for bathymetric surveying.

Comparison and Analysis on the Geophysical data Using Bathymetric Surveying Product (해저지형 측량성과를 이용한 지구물리자료 비교분석)

  • Kim, Yong-Cheol;Choi, Yun-Soo;Park, Byung-Moon
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.89-102
    • /
    • 2009
  • The information of ocean topology is the fundamental source which is necessary for understanding the ocean, producing nautical charts and delimiting maritime boundaries. An echo sounder is being used generally to collect undersea bathymetric data, but an indirect method such as geophysical data acquired by satellites is being used recently. In this study, the outputs of ocean surveying for the production of the Basic Maps of the Sea in 1996 and 1997 in the East Sea and the bathymetric data produced by geophysical data are compared and analyzed. The study areas are Ulleung Plateau, Ulleung Basin and the southern area of Ulleung Basin which have different geophysical characteristics. Through this study, we found that the bathymetric data acquired by an indirect method using satellite is similar to the field surveying results in general configuration of ocean floor and average depth. However, the minimum square error is about 100m in 1700m depth, and it has been observed a local error up to 1000m. In addition, it has been found that the detailed undulation of ocean topology is shown on the gravity data which is acquired by the research vessel.

  • PDF