• Title/Summary/Keyword: Batch-culture system

Search Result 131, Processing Time 0.026 seconds

Optimization of Staphylokinase Production in Bacillus subtilis Using Inducible and Constitutive Promoters

  • Kim, June-Hyung;Wong, Sui-Lam;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.167-172
    • /
    • 2001
  • Staphylokinase (SAK) was produced in B. subtilis using two different promoter systems, i.e. the P43 and sacB promoters. To maximize SAK expression in B. subtilis, fermentation control strategies for each promoter were examined. SAK, under P43, a vegetative promoter transcribed mainly by $\sigma$(sup)B containing RNA polymerase, was overexpressed at low dissolved oxygen (D.O.) levels, suggesting that the sigB operon is somewhat affected by the energy charge of the cells. The expression of SAK at the 10% D.O. level was three times higher than that at the 50% D.O. level. In the case of sacB, a sucrose-inducible promoter, sucrose feeding was used to control the induction period and induction strength. Since sucrose is hydrolyzed by two sucrose hydrolyzing enzymes in the cell and culture broth, the control strategy was based on replenishing the loss of sucrose in the culture. With continuous feeding of sucrose, WB700 (pSAKBQ), which contains the SAK gene under sacB promoter, yielded ca. 35% more SAK than the batch culture. These results present efficient promoter-dependent control strategies in B. subtilis host system for foreign protein expression.

  • PDF

High Cell Density Culture of Bifidobacterium longum by Cross-flow Filtration (Cross-flow filtration에 의한 Bifidobacterium longum의 고농도 배양)

  • Lee, Myong-Suk;Park, Yun-Hee
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.18-22
    • /
    • 1997
  • The conditions for production of high cell density of Bifidobacterium longum were investigated and the cross-flow filtration system was used to remove the inhibitory metabolites, lactic acid and acetic acid. The maximum cell growth was observed with glucose as carbon source at the concentration of 50 g/l at $37^{\circ}C$ with the initial pH 6.5. When B. longum was cultured in a cross-flow filtration system, the maximum cell growth was observed at a dilution rate(D) of $0.31\;h^{-1}$ and the dry cell weight was 16.4 g/l($3.5{\times}10^{10}\;cell/ml$), which was about four times higher than that obtained in the batch culture with pH control.

  • PDF

Effects of Acidification on the Species Compositions of Heterotrophic Bacterial Community in Microcosm (수계 종속영양세균 군집의 종조성에 미치는 산성화의 영향)

  • 안영범;조홍범;최영길
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 1997
  • In an artificial pH-gradient hatch culture system, the author analyzed the effects of acidification on the species composition of heterotrophic bacteria. As the result of this study, it was found that the numbers of total bacteria were not affected by acidification and that the population size of heterotrophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from all of the pH gradient were 12 genera and 22 species. and among them, gram negative and gram positive bacteria were 64% and 36%, respectivcly. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. Regarding to distrihution rate of genuses in each pH gradient, 13 genuses appeared at pH 7 while only 5 genuses appeared at pH 3. which means that the diversity of genera decrease as pH decreased. As a result of cluster analysis, diversity indices 01 species had ranges from 1.13 to 2.37, and decreased as pH decreased. In order to evaluate the diversity of different size samples, we analyzed the expected number of species appearance according to pH by rarefaction method. The statistical significance of species diversity was verified by the fact that the number decreased at lower pH.

  • PDF

Kinetics of Kojic Acid Fermentation by Aspergillus flavus Link S44-1 Using Sucrose as a Carbon Source under Different pH Conditions

  • Rosfarizan M.;Ariff A.B.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 2006
  • Kojic acid production by Aspergillus flavus strain S44-1 using sucrose as a carbon source was carried out in a 250-mL shake flask and a 2-L stirred tank fermenter. For comparison, production of kojic acid using glucose, fructose and its mixture was also carried out. Kojic acid production in shake flask fermentation was 25.8 g/L using glucose as the sole carbon source, 23.6 g/L with sucrose, and 6.4 g/L from fructose. Reduced kojic acid production (13.5 g/L) was observed when a combination of glucose and fructose was used as a carbon source. The highest production of kojic acid (40.2 g/L) was obtained from 150 g/L sucrose in a 2 L fermenter, while the lowest kojic acid production (10.3 g/L) was seen in fermentation using fructose as the sole carbon source. The experimental data from batch fermentation and resuspended cell system was analysed in order to form the basis for a kinetic model of the process. An unstructured model based on logistic and Luedeking-Piret equations was found suitable to describe the growth, substrate consumption, and efficiency of kojic acid production by A. flavus in batch fermentation using sucrose. From this model, it was found that kojic acid production by A. flavus was not a growth-associated process. Fermentation without pH control (from an initial culture pH of 3.0) showed higher kojic acid production than single-phase pH-controlled fermentation (pH 2.5, 2.75, and 3.0).

Starter culture production of Rhodospirillum rubrum P17 for use in treatment of organic waste water (유기폐수처리를 위한 Rhodospirillum rubrum P17의 종균생산)

  • Cho, Kyung-Dug;Kang, Seong-Og;Lim, Wang-Jin;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.488-494
    • /
    • 1993
  • A photosynthetic bacterium strain P17 having high growth rate and assimilating ability of organic acids was isolated from several soil samples, which was identified as Rhodospirillum rubrum. Cultural conditions of the strain P17 were examined for the production of starter culture used in the treatment of organic waste water. The addition of organic acids mixture as carbon source containing 0.2% Na-acetate, 0.1% Na-propionate and 0.2% Na-lactate and 0.1% of yeast extract as growth factor stimulated the cell growth. The maximal cell production was obtained at $30^{\circ}C$, pH 7.0, 2,500 lux of illumination and $50{\sim}100\;rpm$ of agitation. Under the optimal conditions of batch and fed-batch culture systems in a Jar fermentor, 5.17 g/l and 7.93 g/l of cells were obtained after S days of cultivation, respectively. In continuous culture system, the cell productivity was 0.206 g/l/h at a dilution rate of 0.21 $h^{-1}$. When R. rubrum P17 was cultivated in a soybean curd waste water, initial COD level(3,240 mg/l) of the waste water was reduced to 250 mg/l after 4 days of cultivation.

  • PDF

Continuous Alcohol Fermentation by Cell Recycling Using Hollow Fiber Recycle Reactor (Hollow Fiber Recycle Reactor를 이용한 알콜연속 발효)

  • 이시경;박경호;백운화;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.193-198
    • /
    • 1986
  • Improvement of productivity in ethanol fermentation was attempted using a hollow fiber bioreactor (HFR) where Saccharomyces cerevisiac var. ellipsoideus cells were recycled to achieve a high yeast concentration. Industrial wort was used as the fermentation media without supplying any additional nutrients. The performances in hollow fiber recycle reactor (HFR) were compared with those of batch and continuous cultures. In a continuous culture with 11$^{\circ}$P and 15$^{\circ}$P wort media final ethanol concentrations were 4.71% and 5.82% (v/v) and yields 86.2% and 78.6% respectively when the dilution rate (D) was 0.1 h$^{-1}$, in contrast, the ethanol concentration and productivity in HFR were 7.64%(v/v) and 6.1g/l/h at D=0.1h$^{-1}$ with 15$^{\circ}$P media. When the dilution rate was increased to 0.2 h$^{-1}$, the concentration and the Productivity were 7.62% (v/v) and 12.2g/l/h. At D=0.3h$^{-1}$ the sugar was completely consumed and the productivity was 18.1g/l/h. This correponds to 4 times that in continuous system and 16.3 times that in the batch system performed in comparable conditions.

  • PDF

Treatment of Acid dye Using Microbial Immobilization (미생물 고정화를 이용한 산성염료의 처리)

  • 김정목;조무환;양용운
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 1999
  • Strains degrading and decolorizing acid dyes, Nylosan red E-BL 150%. were isolated from natural system, was named as ARK3. The optimal culture conditions of temperature and pH were $35^\circ{C}$, 7.0, respectively. Growth rate of cells in conditions of aerobic shaking more than standing culture conspicuously increased, and optical density of those to strain ARK3 were found as 1.38 and 0.25 after 42 hrs. Decolorization efficiency in batch culture which used as immobilization media to natural zeolite was 15% after 6 hrs, while suspension culture was 5%, also its of immobilization and suspension culture were 90% and 85% after 48 hrs, respectively. Decolorization efficiency of air-lift bioreactor was more than 90% to a dilution rate of $0.038hr^{-1}$, but that was decreased as 70%, when the dilution rate was $0.05hr^{-1}$. Even though at maximum dilution rate of this study, there was not appeared "wash out" phenomienon of biomass. Decolorization efficiency was 97.7% at a dilution rate of $0.025hr^{-1}$, when influent dye concentration was $100mg/\ell$. But if influent dye concentration increased as $150mg/\ell$, even though MLVSS increased, that of treatment water decreased as 93%. Also, when influent dye concentration increased as $200mg/\ell$ and $300mg/\ell$, decolorization efficiencies of treatment water abruptly decreased as 85% and 63%, respectively. Decolorization efficiency was more than 92% to the limit volumetric loading rate of $3.75mg/\ell\cdot{hr}$hr, without regard to variation of influent dye concentration or hydraulic retention time. if volumetric loading rate was more than $3.80mg/\ell\cdot{hr}$, at same condition, decolorization efficiency was lower decrease of retention time than increase of influent dye concentration.entration.

  • PDF

Energy Consumption Analysis of Batch Type Heating Process for Energy Savings in Food Processing Plants (식품가공공장의 에너지 절감을 위한 batch식 가열 공정 에너지 소비 분석 : 사례 연구)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Chae-Young Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.817-823
    • /
    • 2023
  • Manufacturing plants face the challenge of reducing energy use in response to climate change. Reducing energy consumption can be seen as one of the most important issues, such as reducing production costs and improving efficiency. Among manufacturing industries, the increase in energy consumption in the food industry is gradually increasing along with the improvement of the standard of living and the increase in population. In order to save energy in food processing plants, it is important to identify and analyze energy consumption characteristics in energy-consuming processes. Prior to this, it is necessary to monitor and analyze existing energy consumption to derive reduction measures. In this study, a small and medium-sized food processing plant producing processed meat products was used as a case study to identify and analyze the energy consumption structure at typical cycle/stage level of the batch heating process. From this, we tried to establish realistic and quantitative goals that can be obtained under individual process operating conditions. The results of this study will be used as basic data for the development of diffusion and pervasive energy saving FEMS technology for common core processes of food factories of small and medium-sized enterprises in the future.

The Microcosm study for evaluating biobarrier application on sequential degradation of TCE products by Gasoline-Degradaing Mixed Culture

  • Lee, Jae-Sun;Lee, Si-Jin;Lee, Young-Kee;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.440-444
    • /
    • 2003
  • A new approach for ground water treatment combines a permeable Fe(0) barrier to breakdown higher chlorinated solvents like PCE and TCE with a down gradient aerobic biological treatment system to biotransform less chlorinated solvents, such as DCE and vinyl chloride (VC). The expected bacterial performance down gradient of an Fe(0) barrier was evaluated through laboratory batch experiments with a toluene-degrading mixed culture that cometabolically transforms cis-1,2-DCE and VC. The amount of cis-1,2-DCE (initially at 2,000 ppb) and VC (initially at 2,000 ppb) transformed was controlled by the initial toluene(20,000 ppb) concentration. VC was removed much more effectively than Cis-1,2-DCE, and a higher toluene concentration in comparison to the co-substrate concentrations was needed for complete co-substrate removal. Overall, the coupling of an Fe(0) barrier and subsequent biodegradation appears feasible for remediation of complex mixtures of chlorinated solvents and petroleum hydrocarbons in groundwater.

  • PDF

Continuous Ethanol Fermentation Using Membrane Cell Recycle Fermentor (Membrane Cell Recycle Fermentor에 의한 에탄올 연속 발효)

  • 김태석;이석훈;손석민;권윤중;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 1991
  • Ethanol fermentation of glucose by a strain of Saccharomyces cereuisiae was studied in membrane recycle bioreactor, where the fermentation vessel was coupled with cross flow hollow fiber membrane. The cell recycle system controlled backflushing with fresh medium was proven to be effective in alleviating membrane fouling and allowing long term operation of high-cell continuous fermentation. Using 100 g/l initial glucose concentration, the maximum productivity of about 9 5 g/$l \cdot h$ has been achieved at dilution rate 2.5 $h^{-1}$ and bleed stream ratio 0.05 with the corresponding ethanol concentration of 35g/l and glucose conversion of 100%. Increasing the glucose concentration to 200 g/$l \cdot h$ resulted in an increase in ethanol concentration to 48 g/l and productivity to 120 g1l.h. Substrate conversion, however, was only 69%. This productivity was the highest value in the study, and about 38 fold more than that of batch culture and 17 fold more that of single stage continuous culture without cell recycling. No further increase in the productivity was obtained when the glucose concentration was increased reased to 300g/l.

  • PDF