• Title/Summary/Keyword: Batch culture

Search Result 722, Processing Time 0.033 seconds

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.

Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation

  • Wang, Junfeng;Sommerfeld, Milton R.;Lu, Congming;Hu, Qiang
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.193-202
    • /
    • 2013
  • Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g $L^{-1}$ DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g $L^{-1}$ DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g $L^{-1}$ and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g $L^{-1}$), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg $L^{-1}\;d^{-1}$ was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

Effect of Glycine Betaine on Follicle-Stimulating Hormone Production by Chinese Hamster Ovary Cells at Low Culture Temperature (CHO 세포의 저온배양에서 Glycine Betaine이 재조합 FSH의 생산에 미치는 영향)

  • Yoon, Sung-Kwan;Ahn, Yong-Ho
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • Suspension culture of recombinant Chinese hamster ovary (CHO) cells producing follicle-stimulating hormone was performed to investigate the effect of glycine betaine on cell growth and FSH production at low culture temperature. At 28$^{\circ}C$, cell growth was suppressed, but cell viability remained high for a longer culture period. When the culture temperature was lowered from 37$^{\circ}C$ to 28$^{\circ}C$, more than 14-fold increase in the maximum FSH titer was achieved. In batch culture at 28$^{\circ}C$, the use of 15 mM glycine betaine (GB) to culture medium resulted in the enhancement of maximum cell density and FSH titer by 11% and 17%, respectively, compared to the culture without GB. In pseudo-perfusion culture at 28$^{\circ}C$ with the exchange of fresh medium containing 15 mM GB, a final FSH of $2,058{\mu}g$ which is approximately 1.4-fold higher as compared to the culture without GB was obtained. This enhanced FSH production with 15 mM GB was not just because of enhanced specific FSH productivity (qFSH), but mainly because of the extended culture longevity. Taken together, this result demonstrates that the application of GB at low culture temperature is feasible to enhance the production of recombinant proteins in rCHO cells.

Continuous Alcohol Fermentation by Cell Recycling Using Hollow Fiber Recycle Reactor (Hollow Fiber Recycle Reactor를 이용한 알콜연속 발효)

  • 이시경;박경호;백운화;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.193-198
    • /
    • 1986
  • Improvement of productivity in ethanol fermentation was attempted using a hollow fiber bioreactor (HFR) where Saccharomyces cerevisiac var. ellipsoideus cells were recycled to achieve a high yeast concentration. Industrial wort was used as the fermentation media without supplying any additional nutrients. The performances in hollow fiber recycle reactor (HFR) were compared with those of batch and continuous cultures. In a continuous culture with 11$^{\circ}$P and 15$^{\circ}$P wort media final ethanol concentrations were 4.71% and 5.82% (v/v) and yields 86.2% and 78.6% respectively when the dilution rate (D) was 0.1 h$^{-1}$, in contrast, the ethanol concentration and productivity in HFR were 7.64%(v/v) and 6.1g/l/h at D=0.1h$^{-1}$ with 15$^{\circ}$P media. When the dilution rate was increased to 0.2 h$^{-1}$, the concentration and the Productivity were 7.62% (v/v) and 12.2g/l/h. At D=0.3h$^{-1}$ the sugar was completely consumed and the productivity was 18.1g/l/h. This correponds to 4 times that in continuous system and 16.3 times that in the batch system performed in comparable conditions.

  • PDF

Characteristics of Growth and Oil Production of Peppermint Cells in an Air-bubble Bioreactor (기포 생물반응기에서 페퍼민트 세포의 생육 및 정유 생산 특성)

  • 송은범;이형주
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.495-503
    • /
    • 1993
  • To investigate the characteristics of growth and oil production of peppermint cells during a batch culture, cells derived from peppermint callus was cultivated in an air bubble reactor. During the batch culture, effects of inoculum size, abiotic stress, yeast elicitor, and two stage culture on the cell growth, the productivity of oleolesin, and the formation of flavor components were determined and also the sugar concentrations and kinetics of cell growth were analyzed. Among the various sizes of inoculum, the culture with 2.0% packed cell volume inoculum showed the optimum condition for cell growth in the proposed bioreactor, and the cell yield and essential oil production reached to 5.7g/1 and 0.109g/1, respectively. When the abiotic stress of daily 8hr dark and $10^{\circ}C$ cold treatments were given to the culture cell growth decreased but essential oil production increased to 0.546g/l. In a modified Lin-Staba medium in which 100mg/l yeast extract as an elicitor was added to the culture, the cell growth and oil production increased, and menthol content was 22.5% of oil. In the two stage culture, in which the basic culture conditions of 27$^{\circ}C$, light, and without elicitor were employed during the first six days followed by the second stage with daily 8hr treatment of cold and dark condition, and also with yeast extract as an elicitor, cell growth decreased after eight days, essential oil production was not increased, and menthol was not detected. Dry cell yield was 0.38g dry cell/g sugar and specific growth rate was 0.25 day-1. The major terpenoid in the oil was not the menthol but pulegone and piperitone, precursors of menthol were accumulated. However, when yeast elicitor was added, menthol was produced to the level of 22.5% which was the highest value in the peppermint cell culture reported so far.

  • PDF

Reduction of Hexavalent Chromium by Leachate Microorganisms in a Continuous Suspended Growth Culture (연속배양 체제에서의 침출수 미생물에 의한 6가 크롬이온의 환원)

  • Kim, Hyoun-Young;Oh, Young-Sook;Kim, Yeong-Kwan;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.126-131
    • /
    • 1998
  • Reduction of hexavalent chromium to its trivalent form by leachate microorganisms was studied in batch and bench-scale continuous stirred tank reactor. The inoculum was a culture of microorganisms in leachate and capable of providing up to 90% chromate reduction during 72 h batch assay with $20mg\;Cr(VI)\;L^{-1}$ in minimal media containing different levels of leachate (10 to 60%) and glucose (50 to 200 mM). Addition of glucose increased the efficiency of chromate reduction, but adverse effect was observed with increase of leachate probably due to the competitive inhibition between chromate and sulfate ions. The continuous culture experiment was conducted for 124 days using synthetic feed containing different levels of chromate (5 to $65mg\;L^{-1}$) at room temperature. With a hydraulic retention time of 36 h, chromate reduction efficiency was mostly 100% when Cr(VI) concentrations in the reactor were in the range of 5 to $50mg\;L^{-1}$ Specific rate of Cr(VI) removal was calculated as $3.492mg\;g^{-1}\;protein\;h^{-1}$ during the period of 101~124 days from the start-up which showed 81.2% of average reduction efficiency. The results indicate the potential application of using leachate microorganisms for detoxification of hexavalent chromium in various chromium-contaminated wastewater from landfill or tannery sites.

  • PDF

Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity (큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성)

  • Woo, Yean Jeong;Oh, Si Yoon;Choi, Jang Won
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • To optimize the expression and secretion of ferritin protein associated with ion storage in the mushroom, Pleurotus eryngii, a recombinant secretion vector, harboring the ferritin gene, was constructed using a pPEVPR1b vector under the control of the CaMV 35S promoter and signal sequence of pathogen related protein (PR1b). The ferritin gene was isolated from the T-Fer vector following digestion with EcoRI and HindIII. The gene was then introduced into the pPEVPR1b secretion vector, and it was then named pPEVPR1b-Fer. The recombinant vector was transferred into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformants were selected on MCM medium supplemented with kanamycin and its expression was confirmed by SDS-PAGE and western blotting. Expression of ferritin protein was optimized by modifying the culture conditions such as incubation time and temperature in batch and 20 L airlift type fermenter. The optimal conditions for ferritin production were achieved at 25℃ and after incubating for 8 days on MCM medium. The amount of ferritin protein was 2.4 mg/g mycelia, as measured by a quantitative protein assay. However, the signal sequence of PR1b (32 amino acids) seems to be correctly processed by peptidase and ferritin protein may be targeted in the apoplast region of mycelia, and it might not be secreted in the culture medium. The iron binding activity was confirmed by Perls' staining in a 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in P. eryngii mycelia. Mycelium powder containing ferritin was tested as a feed additive in broilers. The addition of ferritin powder stimulated the growth of young broilers and improved their feed efficiency and production index.

Accumulation of Poly-$\beta$-Hydroxybutyrie Acid by Alcaligenes sp. (Alcaligenes sp.에 의한 Poly-$\beta$-Hydroxybutyric Acid의 축적)

  • 임명순;손홍주;박수민;이종근;이상준
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.363-370
    • /
    • 1992
  • Microorganisms capable of accumulating poly-p-hydroxybutyric acid(PHB) were isolated from soil by enrichment culture technique. Among them, the strain designated as FL-027 had high PHB productivity and was identified as Alcaligenes. The optimal medium composition for cell growth was 8.0 $g/\ell$ of fructose and 3.0 $g/\ell$ of $(NH_4)_2S0_4$, equivalent to C/N ratio 5.04 at pH 7.0 and $30^{\circ}C$. To investigate the optimal conditions for the PHB accumulation, we divided the process into two stages; the first stage for the growth of the cell in nutrient-rich medium and the second stage for the PHB accumulation in nutrient-deficiency medium. The optimal conditions for PHB accumulation were 8.0 $g/\ell$ of fructose and 0.25 $g/\ell$ of $(NH_4)_2S0_4$, equivalent to C/N ratio 60 at pH 6.5 and $30^{\circ}C$. PHB accumulation was stimulated by deficiency of nutrients such as $NH_4^+$, $Ca^{2+}$, $SO_4^{2+}$ in medium. Among them. $NH_4^+$ deficiency was chosen because of its effectiveness. We found the inhibition of cell growth by fructose in batch culture. In order to keep the fructose concentration at an optimal level, intermittent feeding fed-batch culture was employed, and the cell concentration as high as 10.83 $g/\ell$ whose PHB content was responsible for 43% of the dry cell weight. The purified PHB was identified as homopolymer of 3-hydroxybutyric acid by using IR and $^1H-NMR$.

  • PDF

Optimization of Induction Conditions for Bacillus-derived Esterase Production by High-cell Density Fermentation of Recombinant Escherichia coli (재조합 대장균의 고농도 배양과 유도조건 최적화를 통한 Bacillus 유래 esterase의 생산)

  • Kang, Seung-Hoon;Min, Byung-Hyuk;Choi, Hong-Yeol;Kim, Dong-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • To increase the efficiency of esterase production by Bacillus, high cell-density culture of recombinant Escherichia coli through fed batch fermentation was tested. Cells were cultured to $OD_{600}$ of 76 (35.8 g/l DCW) with dissolved oxygen level controlled to least above 30% air saturation by supplying pure oxygen. Cells were cultured to an $OD_{600}$ of 90 (42.4 g/l DCW) with glucose feeding controlled to at least 1 g/l. However, the cells reached stationary phase at the late stage of culture, despite glucose being supplied. Cells were cultured to an $OD_{600}$ of 185 (87.3 g/l DCW) by supplying additional medium with fortified yeast extract. To increase the productivity of the recombinant protein, cell growth and esterase productivity based on induction time were evaluated. Late exponential phase induction for esterase production in fed batch fermentation resulted in maximum optical density $OD_{600}$ of 190 (89 g/l DCW) and maximum esterase activity of 1745 U/l, corresponding to a 5.8-fold enhancement in esterase production, compared to the early exponential phase induction. In this study, we established fermentation methods for achieving maximum production of Bacillus-derived esterase by optimizing IPTG induction time in high-cell density culture by supplying pure oxygen and a nitrogen source.

Supplementing Rhodobacter sphaeroides in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk

  • Bae, Gui-Seck;Choi, Ahreum;Yeo, Joon Mo;Kim, Jong Nam;Song, Jaeyong;Kim, Eun Joong;Chang, Moon Baek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • Objective: To examine the effects of Rhodobacter sphaeroides (R. sphaeroides) supplementation as a direct-fed microbial (DFM) on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10) transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. Methods: The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR) for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR) treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis) ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE) applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. Results: The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. Conclusion: The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future.