• 제목/요약/키워드: Batch Learning Method

검색결과 48건 처리시간 0.019초

대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성 (Incremental Generation of A Decision Tree Using Global Discretization For Large Data)

  • 한경식;이수원
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.487-498
    • /
    • 2005
  • 최근 들어, 대용량의 데이터를 처리할 수 있는 트리 생성 방법에 많은 관심이 집중되고 있다 그러나 대용량 데이터를 위한 대부분의 알고리즘은 일괄처리 방식으로 데이터를 처리하기 때문에 새로운 데이터가 추가되면 이 데이터를 반영한 결정 트리를 생성하기 위해 처음부터 트리를 다시 생성해야 하다. 이러한 재생성에 따른 비용문제에 보다 효율적인 접근 방법은 결정 트리를 순차적으로 생성하는 접근 방법이다. 대표적인 알고리즘으로 BOAT와 ITI를 들 수 있으며 이들 알고리즘은 수치형 데이터 처리를 위해 지역적 범주화를 이용한다. 그러나 범주화는 정렬된 형태의 수치형 데이터를 요구하기 때문에 대용량 데이터를 처리해야하는 상황에서 전체 데이터에 대해 한번만 정렬을 수행하는 전역적 범주화 기법이 모든 노드에서 매번 정렬을 수행하는 지역적 범주화보다 적합하다. 본 논문은 수치형 데이터 처리를 위해 전역적 범주화를 이용하여 생성된 트리를 효율적으로 재생성하는 순차적 트리 생성 방법을 제안한다. 새로운 데이터가 추가될 경우, 전역적 범주화에 기반 한 트리를 순차적으로 생성하기 위해서는 첫째, 이 새로운 데이터가 반영된 범주를 재생성해야 하며, 둘째, 범주 변화에 맞게 트리의 구조를 변화시켜야한다. 본 논문에서는 효율적인 범주 재생성을 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안하며 범주 변화에 맞는 트리 구조 변화를 위해 신뢰구간과 트리 재구조화기법을 이용한다. 본 논문에서 피플 데이터베이스를 이용하여 기존의 지역적 범주화를 이용한 경우와 비교 실험하였다.

선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정 (RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme)

  • 배창한;김영국;박찬경;김용기;한문섭
    • 한국철도학회논문집
    • /
    • 제19권3호
    • /
    • pp.314-323
    • /
    • 2016
  • 직류 전철변전소의 가선전압은 전동차들의 회생제동 및 역행가속패턴에 따라 급격히 상승 또는 하강하는 특성을 갖는다. 가선전압 순시 변동폭을 최소로 유지함으로써, 전철변전소와 전동차들의 에너지 효율을 개선시키기 위한 다양한 연구들이 이루어지고 있다. 본 논문은 직류전철 변전소의 가선전압의 급격한 변동특성을 모델링하고 선형인공 신경망 알고리즘을 이용한 가선전압 회로모델의 파라메터 추정 방법을 제안하며, 최소자승법을 이용한 추정방법과의 비교를 통해 이 방법의 타당성을 입증한다. 가선전압 및 피더전류들의 누적 측정값을 사용하여 일괄처리 최소자승법으로 RC 병렬회로의 파라메터들을 추정한 결과를 제시하며, 실시간 가선전압 및 피더전류 측정값을 이용하여 오차역 전파방식으로 학습되는 선형인공신경망 기법 추정 결과를 분석한다.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Spark 기반 빅데이터 처리를 위한 K-최근접 이웃 연결 (K Nearest Neighbor Joins for Big Data Processing based on Spark)

  • 기가기;정영지
    • 한국정보통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.1731-1737
    • /
    • 2017
  • K-최근접 이웃 연결(KNN 연결) 알고리즘은 기계학습에서 매우 효과적인 방법으로, 작은 데이터군에 대해서 널리 사용되어 왔다. 데이터의 수가 증가함에 따라, 단일 컴퓨터에서는 메모리와 수행시간의 제약으로 실제적인 응용프로그램에서는 실행하기에 적합하지 못하였다. 최근에는 대규모 데이터 처리를 위해서, 많은 수의 컴퓨터로 이루어진 클러스터에서 실행될 수 있는 맵리듀스 (MapReduce)로 알려진 알고리즘이 널리 사용되고 있다. 하둡은 맵리듀스 알고리즘을 구현한 프레임워크이지만 스파크라고 하는 새로운 프레임워크에 의하여 그 성능이 월등히 개선되었다. 본 논문에서는, 스파크에 기반하여 구현된 KNN 연결 알고리즘을 제안하였으며, 이는 인메모리(In-Memory) 연산 기능의 장점으로 하둡보다 빠르고 보다 효율적일 것으로 기대한다. 실험을 통하여, 수행시간에 영향을 주는 요소들에 관하여 조사하였으며, 제안한 접근 방식의 우수성과 효율성을 확인하였다.

서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용 (Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics)

  • 황지수;문재원
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.872-884
    • /
    • 2022
  • IoT 산업 발전으로 다양한 산업군에서 서로 다른 형태의 시계열 데이터를 생성하고 있으며 이를 다시 통합하여 재생산 및 활용하는 연구로 진화하고 있다. 더불어, 실제 산업에서 데이터 처리 속도 및 활용 시스템의 이슈 등으로 인해 시계열 데이터 활용 시 데이터의 크기를 압축하여 통합 활용하는 경향이 증가하고 있다. 그러나 시계열 데이터의 통합 가이드라인이 명확하지 않고 데이터 기술 시간 간격, 시간 구간 등 각각의 특성이 달라 일괄 통합하여 활용하기 어렵다. 본 논문에서는 통합 기준 설정 방법과 시계열 데이터의 통합시 발생하는 문제점을 기반으로 두 가지의 통합 방법을 제시하였다. 이를 기반으로 시계열 데이터의 특성을 고려한 이질적 시계열 데이터 통합 프레임워크를 구성하였으며 압축된 서로 다른 이질적 시계열 데이터의 통합과 다양한 기계 학습에 활용할 수 있음을 확인하였다.

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안 (Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting)

  • 박혜승;윤종욱;이호준;양현호
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.199-207
    • /
    • 2024
  • 지역 저수지들은 농업용수 공급의 중요한 수원공으로 가뭄과 같은 극단적 기후 조건을 대비하여 안정적인 저수율 관리가 필수적이다. 저수율 예측은 국지적 강우와 같은 지역적 기후 특성뿐만 아니라 작부시기를 포함하는 계절적 요인 등에 크게 영향을 받기 때문에 적절한 예측 모델을 선정하는 것만큼 입/출력 데이터 간 상관관계 파악이 무엇보다 중요하다. 이에 본 연구에서는 1991년부터 2022년까지의 전라북도 400여 개 저수지의 광범위한 다변량 데이터를 활용하여 각 저수지의 복잡한 수문학·기후학적 환경요인을 포괄적으로 반영한 저수율 예측 모델을 학습 및 검증하고, 각 입력 특성이 저수율 예측 성능에 미치는 영향력을 분석하고자 한다. 신경망 구조에 따른 저수율 예측 성능 개선이 아닌 다변량의 입력 데이터와 예측 성능 간의 상관관계에 초점을 맞추기 위하여 실험에 사용된 예측 모델로 합성곱신경망 또는 순환신경망과 같은 복잡한 형태가 아닌 완전연결계층, 배치정규화, 드롭아웃, 활성화 함수 등의 조합으로 구성된 기본적인 순방향 신경망을 채택하였다. 추가적으로 대부분의 기존 연구에서는 하루 단위의 단기 예측 성능만을 제시하고 있으며 이러한 단기 예측 방식은 10일, 한 달 단위 등 중장기적 예측이 필요한 실무환경에 적합하지 않기 때문에, 본 연구에서는 하루 단위 예측값을 다음 입력으로 사용하는 재귀적 방식을 통해 최대 한 달 뒤 저수율 예측 성능을 측정하였다. 실험을 통해 예측 기간에 따른 성능 변화 양상을 파악하였으며, Ablation study를 바탕으로 예측 모델의 각 입력 특성이 전체 성능에 끼치는 영향을 분석하였다.