• Title/Summary/Keyword: Batch Experiment

Search Result 453, Processing Time 0.024 seconds

A Study on the Adsorption of Heavy Metals by Chestnut Shell (밤 껍질에 의한 중금속 흡착에 관한 연구)

  • 신성의;차월석;서진종;김종수
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.141-145
    • /
    • 1999
  • The study was conducted for the efficient utilization of biomaterials such as Chestnut shell which was wasted tremendously as an agricultural by-products. This biomaterials were examined for their removal rate of heavy metal ions as adsorbents in wastewater by batch adsorption experiments. In this experiment, the heavy metal ions used were $\Cd^{2+},\;Fe^{2+},\;Cr^{6+},\;Mn^{2+},\;Cu^{2+}$ and $Pb^{2+}$. The range of time for the removal rates of heavy metal ions were observed about 10 min. The range of high pH for the removal rates of $\Cd^{2+},\;Fe^{2+},\;Mn^{2+},\;Cu^{2+}$ and $Pb^{2+}$ ere observed 7.0-9.0. The range of high pH for the removal rate of $Cr_{6+}$ was observed 2. In the case of raw chestnut shell, the removal rates of $\Fe^{2+},\;Mn^{2+},\;Cu^{2+}$ and $Pb^{2+}$ were above 70 percent. The removal rates of heavy metals in formaline pretreated chestnut shells except $Cd_{2+}$ were above 50 percent and in phosphorylating chestnut shells except $Cr_{6+}$ were above 60 percent. Chestnut shells pretreated by formaline and phosphorylating were not so good enough for improvement of removal rates with pH change in mixed heavy metal solution.

  • PDF

Treatment of Livestock Wastewater by Electrochemical Method (전기화확적 방법에 의한 축산폐수의 처리)

  • Heo, Jong-Soo;Chung, Tae-Uk;Lee, Hong-Jae;Baek, Song-Bum;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.332-338
    • /
    • 1999
  • To treat livestock wastewater effectively by electrochemical method using a stainless steel electrode or au aluminum electrode, the effects of voltage, distance of electrodes and PACS(Poly Aluminum Chloride Silicate) dosage on removals of pollutants in batch experiment for investigation the optimum treatment conditions of livestock wastewater were investigated. The results were summarized as follows ; On the effect of voltage, temperature and pH in electrochemical reactor were increased with increase in voltage but EC was a reverse in both electrodes. Removals of COD and T-N were increased with increase in voltage in both electrodes. SS removal was greater than 90% regardless of voltage without doing electrochemical reaction over 15min at 20V or 12min at 30V in both electrodes. T-P removal was over 90% regardless of voltage in both electrodes. On the effect of distance between two electrodes, removals of COD, T-N and T-P were increased with closeness in distance between two electrodes, and SS removal was greeter than 90% regardless of distance between two electrodes in both electrodes. On the effect of PACS dosage, removals of COD, T-N and T-P were increased with increased in PACS dosage up to 200㎎/l in both electrodes. SS removal was greater than 90% regardless of PACS dosage in both electrodes.

  • PDF

A Study on the Synthesis of Carboxymethyl Chitin and Separation of Alkali-Earth Metal ions by Adsorption (Carboxymethyl Chitin의 합성 및 알칼리 토금속 이온의 흡착분리에 관한 연구)

  • Choi, Kyu-Suk;Chang, Byung-Kwon;Kim, Chong-Hee;Kim, Yong-Moon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.270-278
    • /
    • 1991
  • Carboxymethyl chitin(CM-chitin) was prepared by the reaction of alkali chitin with monochloroacetic acid in isopropyl alcohol. According to the pH variation, the adsorptivity of this chelating polymer to the alkali-earth metal ions such as $Ca^{2+},\;Mg^{2+}$, $Sr^{2+}$, $Ba^{2+}$ ions was determined by batch method. The adsorption tendency of this chelating polymer to most metal ions was increased with the increase of pH. The highest degree of adsorption was observed toward $Ca^{2+}$ ion among the alkali-earth metal ions. The selectivity adsorption property toward $Ca^{2+}$ ion was examined in the solution of $Ca^{2+}$ and $Mg^{2+}$ ions, and it was observed that CM-chitin showed excellent selectivity to $Ca^{2+}$ ion than $Mg^{2+}$ ion. $Mg^{2+}$ ion bound to CM-chitin molecule in the presence of $Ca^{2+}$ ion owing to low equilibrium constant. In the adsorption experiment of $Ca^{2+}$ and $Mg^{2+}$ ions to the CM-chitin under coexistence of $Na^+$ and $K^+$ ions, it observed that adsorptivity of only $Ca^{2+}$ ions was not affected by these monovalent cations.

  • PDF

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.

Enhanced Acidification Efficiency of Sewage Sludge by Seaweed Addition (해조류 첨가를 통한 하수슬러지 산발효 효율 증대)

  • Shin, Sang-Ryong;Lee, Mo-Kwon;Kim, Min-Gyun;Hong, Seong-Min;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In the present work, the synergistic effect of seaweed addition on organic acid production from sludge was investigated. The batch experiment was conducted at various mixing ratios of sewage sludge and seaweed (100:0, 75:25, 50:50, 25:75, 0:100 on a COD basis) under the substrate concentration of 20 g COD/L. The fermentation temperature was conducted under mesophilic condition ($35^{\circ}C$) and a heat-treated ($90^{\circ}C$ for 20 min) anaerobic digester sludge was used as a seeding source to suppress the methanogenic activity, The results showed that the amount of organic acid production increased as the content of seaweed increased: organic acids were 1.45, 3.22, 4.28, 5.24 and 4.82 g COD/L for the mixing ratio of 100:0, 75:25, 50:50, 25:75 and 0:100 respectively. The synergistic effect was calculated based on the organic acid production of individual sludge and seaweed, and was found to be 0.92, 1.14, 1.26 g COD/L at the mixing ratio of 75:25, 50:50 and 25:75, which indicates that 40% of synergy was obtained when 25% of seaweed was added. The synergistic effect could be ascribed to the high C/N ratio and biodegradability of seaweed.

A Effect on Physiological Metabolism of Microorganism Which Irradiated by Non-ionization Radiation (비 전리 방사선을 조사한 미생물에서 생리적 대사에 미치는 영향)

  • Ko, In-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.381-387
    • /
    • 2018
  • A Effect on physiological metabolism of microorganism which irradiated by visible light of non-ionization radiation(12,000 Lux) was investigated. The microorganism used in this experiment was a Rhodospirillum rubrum KS-301 of chemosynthetic microorganism. Batch fermentation of glucose were implement, and based on the data resulted from the fermentation. First, physiological characteristic of microorganism which was not irradiated was investigated. As a result, the decrease of the residual quantity of the substance(5.03 g/L - 2.17 g/L) was increased with the quantity of the bacteria(1.08 g/L - 3.14 g/L)and the quantity of the hydrogenous production(0.186 g - 0.3 g) respectively. Second, physiological characteristic of microorganism which was irradiated was investigated. As a result, the decrease of the residual quantity of the substance(13.17 g/L - 5.2 g/L) was increased with the quantity of the bacteria(4.7 g/L - 10.57 g/L)and the quantity of the hydrogenous production(0.186 g - 0.3 g) respectively. As the physiological characteristic of microorganism which was irradiated by visible light of non-ionization radiation(12,000 Lux) was active with its life, but the cell damages irradiated by with gamma-ray, X-ray, electron-ray in ionization radiation were appeared at cell.

Biosorption Characteristics of Pb and Cu by Ca-alginate Immobilized Algae Spirulina platensis (Ca-alginate에 고정한 Spirulina platensis의 납과 구리 흡착 특성)

  • Shin, Taek-Soo;Woo, Byoung-Sung;Lim, Byung-Seo;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.446-452
    • /
    • 2008
  • This study was conducted to research the biosorption characteristics using algae, Spirulina platensis, for the removal of Pb and Cu ions in wastewater. Both of free algal cell and immobilized algae by Ca-alginate were used as bioadsorbent, and experiment was proceed in batch reactor for Pb and Cu ions removal, respectively. In the biosorption of Pb and Cu ions by free Spirulina platensis cell, the adsorption equilibrium reached within 20 minute. The higher adsorbed amount of Pb and Cu was shown as increasing of initial concentration of Pb and Cu, and pH of solution, respectively, and the optimum pH was 4.5$\sim$5.0. Under the conditions of initial concentration of Pb or Cu are 200 mg/L, the maximum amounts of Pb and Cu adsorbed to the unit weight of Spirulina platensis were 86.43 and 57.02 mg/g, respectively, and these values were 1.94 and 1.48 times higher than those of activated carbon under same conditions, respectively. The biosorption kinetics of Pb and Cu ions by free Spirulina platensis cell fitted very well to the Freundlich and Langmuir isotherm. The maximum amount of Pb or Cu adsorbed to the unit mass of adsorbent by the Langmuir isotherm($q_{max}$) represented as 95.24 and 62.50 mg/g, respectively. The FT-IR results of free Spirulina platensis biomass showed that biomass has different functional groups and these functional groups are able to react with metal ions in aqueous solution. In the biosorption of Pb and Cu ions by Ca-alginate immobilized algae Spirulina platensis, the adsorption equilibrium reached within 40 min. and observed a little diffusion limitation differed from the free algal cell adsorption.

Stabilization of Heavy Metals using Ca-Citrate-Phosphate Solution: Effect of Soil Microorganisms (구연산/칼슘/인산염 용액을 이용한 토양 중금속 안정화: 토양 미생물이 미치는 영향)

  • Song, Ho-Cheol;Song, Doo-Sup;Cho, Dong-Wan;Park, Sung-Won;Choi, Sang-Hun;Jeon, Byong-Hun;Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • A farming area located near an abandoned copper mine in GuPo-ri, Choongchung province is heavily contaminated with heavy metals such as As, Pb, Cd, Cu and Zn of which concentrations are higher than the values typically detected in Korean soil environment. In this work, laboratory and field studies were conducted to examine feasibility of using Ca-citrate-phosphate solution in stabilizing heavy metals in the polluted soils. In laboratory batch experiments with field soil, the addition of Ca-citrate-phosphate solution resulted in decrease of aqueous phase concentration of phosphate and improvement of heavy metal stabilization, compared to those for sterilized soil samples. This indicates that microbial uptake of phosphate may have provided positive effects on availability of phosphate toward heavy metal stabilization. According to microbial community analysis for the field experiment, the use of Ca-citrate-phosphate led to increased diversity of microbial populations, and strict anaerobic microorganisms such as Anaerofilum and Treponema became the most dominant populations in the solution-amended field experiments. These findings suggest that, when Ca-citrate-phosphate is used for heavy metal stabilization in soils, microbial processes may have important roles in improving the stabilization of heavy metals by providing reducing conditions to the treatment locations or/and by making phosphate available to heavy metal stabilization.

Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

  • Wang, Y.;Ramirez-Bribiesca, J.E.;Yanke, L.J.;Tsang, A.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and ${\beta}$-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 ${\mu}g$/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 ${\mu}g$/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 ${\mu}g$/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of $^{15}N$ into particle-associated microbial N ($^{15}N$-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) $^{15}N$-PAMN at 4 h only, but EFE on AS increased (p<0.001) $^{15}N$-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) $^{15}N$-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it.

Effectiveness of Zeolite and Granular Activated Carbon Addition before Starvation for the Performance Recovering of the Sludge Settleability and Removal Efficiency (Starvation전 제올라이트 및 입상활성탄의 주입이 슬러지 침강성 및 오염물질 처리효율 회복에 미치는 영향)

  • Oh, Hye-Ran;Kim, Sang-Soo;Moon, Byung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.234-240
    • /
    • 2010
  • The effectiveness of adding powdered zeolite and granular activated carbon (GAC) before starvation into biological reactor for recovering its performances was investigated. Two types of carrier addition in Sequencing Batch Reactor (SBR) system for non-saline and saline wastewater were evaluated after starvation periods. During the experiment, settleablity (SVI), floc size, fractal dimension, $COD_{Mn}$, T-N, T-P removal efficiencies and recovery time were monitored. When the wastewater feeding was resumed after starvation period for 5days, the SVI increased at the beginning of resumption and then decreased with time in both types. And the larger the floc size and fractal dimension of floc, the more increased removal efficiency for $COD_{Mn}$, T-N and T-P was also. Its performance recovery was strongly correlated with floc size and fractal dimension of activated sludge. After resuming the wastewater feeding, the SVI, floc size, fractal dimension, $COD_{Mn}$, T-N, T-P removal efficiency of SBR with carrier improved and reached its initial value faster compared to those of SBR without carrier.