This paper presents the control and implementation of the dual-stator-winding induction generator for variable frequency AC (VFAC) generating system. This generator has two sets of stator windings embedded into the stator slots. The power winding produces the VFAC power to feed the loads, and the control winding is connected to the static excitation controller to control the generator for output voltage regulation with speed and load variations. On the basis of the idea of power balance, an instantaneous slip frequency control (ISFC) strategy using the information of both the output voltage and the output power is used in this system. A series of experiments is carried out on a 15 kW prototype for verification. Results show that the system has good static and dynamic performance in a wide speed range, which demonstrates that the ISFC strategy is suitable for this system.
본 논문에서는 데이터 스트림 환경에서 윈도우 기반 연산자를 대상으로 메모리와 연산 비용의 상대적인 이해득실 관계를 분석한다. 이를 위하여 기본적인 연산자 네트워크 구성 요소를 식별하고, 윈도우 메모리의 재배치를 통한 메모리 소요량의 감소 효과와, 이로 인한 추가적인 연산 비용의 규모를 산정하는 비용 모델을 수립한다. 이러한 비용 모델을 통해 윈도우 메모리의 재배치의 효용성을 확인하고, 이러한 접근 방법을 데이터 스트림 질의의 실행 계획 개선을 위해 효과적으로 활용할 수 있는 방법을 모색한다. 이를 통해 데이터 스트림 환경에서 질의 처리 및 최적화의 적용 영역을 확장시키고, 윈도우 메모리 재배치를 통한 질의최적화를 위한 비용 산정 모델의 토대를 제공한다.
Anorexia nervosa is a physical and psychosocial disorder that occurs most frequently in adolescent girls and young adult women. A decade ago, anorexia nervosa was rare outside of the developed western countries. However, it is now becoming a common clinical problem among young women in Korea. It is not enough to merely focus on relieving patients from the symptoms of "not eating," which is a practice that has been adopted by some forms of hospital care. The evidence base to guide treatment is limited. Nevertheless, there is the hope that a better understanding of the factors that play a role in the initiation and maintenance of disordered eating behaviors may be lead to more sophisticated treatments. This review aims to look beyond the overt "not eating" phenotype of anorexia nervosa and considers eating disorder endophenotypes based on Treasure's model. The first part of the review sets the basis for a framework of potential eating disorder endophenotypes. A description of the evidence of disordered eating behaviors as well as the clinical and psychopathological features associated with the central control of appetite follow. Finally, we describe how endophenotypes can be translated into treatments.
본 논문에서는 퍼지규칙 기반 시스템에서 규칙 내에 포함된 불완전한 속성을 제거하여 보다 간략화 된 규칙으로도 분류할 수 있는 방법을 제안하였다. 제안한 방법에서는 규칙 내에 포함된 불완전한 속성을 제거하기 위해 러프집합을 이용하였고 보다 명확한 분류를 위해 출력부 소속함수의 적합도가 최대인 속성들을 추출하였다. 또한 모의실험에서는 제안된 방법의 타당성을 검증하기 위해 rice taste data를 기반으로 규칙 감축 전 퍼지 max-product 결과와 규칙 감축 후 퍼지 max-product 결과를 비교하였다. 그 결과, 규칙 감축 전 max-product 결과와 규칙 감축 후 max-product 결과가 정확히 일치함을 볼 수 있었고, 보다 객관적인 검증을 위해 비퍼지화 된 실수 구간을 비교하였다.
Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권1호
/
pp.454-475
/
2018
This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.
Over the last 100 years since the introduction of electricity, the nation has faced ever increasing demand for electricity as consequence of the rapid economic growth. The expanded consumption ratio for electricity naturally increased the possibility for electricity related accident mainly iii the form of electrically ignited fire and human injuries from electric shock. Under such circumstances, the presented study sets a focus on analysing the causes of the electrically related fire accidents happened in the nation over the last 10 years(in the 80's) to provide a scientific basis for identifying the cause of electric fires. Identification of the cause of fire ignited electrically may be approached either by studying accident related electrical properties or by investigating power instruments at the place of the accient. In the present paper, the former approach is taken especially on investigating the consequences of over current induced by short circuiting of high power instruments which is reported as the primary cause electricity related fire accidents. In order to provide reliability of the identification method, microscopic photograph's are taken for the cross sections of the electrical materials(fuse, wire, plug socket and plug) after being exposed to over current and heated by external means respectively. The results are consequently compared and analysed.
In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.
This study investigates the importance of customers who use hotel restaurants on the basis of literature and actual data, establishes positioning strategies to stimulate hotel restaurants amidst an intensely competitive market, and sets up marketing strategies that can be applied to hotel restaurant business from the analysis results. Determinant factors for hotel restaurants were service quality, food, atmosphere and cleanness, brand and reputation, the attitude and appearance of attendants, and variety of menu, in the order of importance. As for the analysis results for satisfaction, the higher the customers regarded on the attitude and appearance of attendants and the food of the restaurant, the higher the overall satisfaction, the intention of revisiting, and the intention of recommendation of the customers became. Therefore, the marketing and promotion staffs of hotel restaurants should search for the ways to meet these needs of customers as much as possible, and identify the usage inclinations and satisfaction level of customers when carrying out marketing activities and establishing customer relationship marketing strategies.
Kim, So-Jung;An, Duck-Soon;Lee, Hyuek-Jae;Lee, Dong-Sun
Preventive Nutrition and Food Science
/
제13권4호
/
pp.348-353
/
2008
Aerobic bacterial growth on Korean pan.fried meat patties as a primary quality deterioration factor was modeled as a function of temperature to estimate microbial spoilage on a real.time basis under dynamic storage conditions. Bacteria counts in the stretch.wrapped foods held at constant temperatures of 0, 5, 10 and $15^{\circ}C$ were measured throughout storage. The bootstrapping method was applied to generate many resampled data sets of mean microbial counts, which were then used to estimate the parameters of the microbial growth model of Baranyi & Roberts in the form of differential equations. The temperature functions of the primary model parameters were set up with confidence limits. Incorporating the temperature dependent parameters into the differential equations of bacterial growth could produce predictions closely representing the experimental data under constant and fluctuating temperature conditions.
Since air quality monitoring data sets are important base for developing of air quality management strategies including policy making and policy performance assessment, the environmental protection authorities need to organize and operate monitoring network properly. Air quality monitoring network of Busan, consisting of 18 stations, was allocated under unscientific and irrational principles. Thus the current state of air quality monitoring networks was reassessed the effect and appropriateness of monitoring objectives such as population protection and sources surveillance. In the process of the reassessment, a GIS-based decision support system was constructed and used to simulate air quality over complex terrain and to conduct optimization analysis for air quality monitoring network with multi-objective. The maximization of protection capability for population appears to be the most effective and principal objective among various objectives. The relocation of current monitoring stations through optimization analysis of multi-objective appears to be better than the network building for maximization of population protection capability. The decision support system developed in this study on the basis of GIS-based database appear to be useful for the environmental protection authorities to plan and manage air quality monitoring network over complex terrain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.