• Title/Summary/Keyword: Basin

Search Result 5,184, Processing Time 0.031 seconds

Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea (동해 울릉분지에서 대륙사면과 분지 퇴적물의 지화학적 특성에 따른 황산염 환원 비교)

  • You, Ok-Rye;Mok, Jin-Sook;Kim, Sung-Han;Choi, Dong-Lim;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.299-307
    • /
    • 2010
  • In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ${\mu}mol$ $cm^{-3}$) and iron oxides (133 ${\mu}mol$ $cm^{-3}$), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol $cm^{-3}$ $d^{-1}$ at the slope site (M1) and from 0.65 to 22.32 nmol $cm^{-3}$ $d^{-1}$ at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol $m^{-2}$ $d^{-1}$) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol $m^{-2}$ $d^{-1}$) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.

Community Structure, Diversity, and Vertical Distribution of Archaea Revealed by 16S rRNA Gene Analysis in the Deep Sea Sediment of the Ulleung Basin, East Sea (16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구)

  • Kim, Bo-Bae;Cho, Hye-Youn;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2010
  • To assess community structure and diversity of archaea, a clone sequencing analysis based on an archaeal 16S rRNA gene was conducted at three sediment depths of the continental slope and Ulleung Basin in the East Sea. A total of 311 and 342 clones were sequenced at the slope and basin sites, respectively. Marine Group I, which is known as the ammonia oxidizers, appeared to predominate in the surface sediment of both sites (97.3% at slope, 88.5% at basin). In the anoxic subsurface sediment of the slope and basin, the predominant archaeal group differed noticeably. Marine Benthic Group B dominated in the subsurface sediment of the slope. Marine Benthic Group D and Miscellaneous Crenarchaeotal Group were the second largest archaeal group at 8-9 cm and 18-19 cm depth, respectively. Marine Benthic Group C of Crenarchaeota occupied the highest proportion by accounting for more than 60% of total clones in the subsurface sediments of the basin site. While archaeal groups that use metal oxide as an electron acceptor were relatively more abundant at the basin sites with manganese (Mn) oxide-enriched surface sediment, archaeal groups related to the sulfur cycle were more abundant in the sulfidogenic sediments of the slope. Overall results indicate that archaeal communities in the Ulleung Basin show clear spatial variation with depth and sites according to geochemical properties the sediment. Archaeal communities also seem to play a significant role in the biogeochemical carbon (C), nitrogen (N), sulfur (S), and metal cycles at each site.

Geomorphic development of the Jeogchung·Chogye Basin and inner alluvial fan, Hapcheon, South Korea (합천 적중·초계분지와 분지 내 선상지 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.225-239
    • /
    • 2016
  • The Jeogchung Chogye Basin shows perfect basin formation surrounded with divides, excluding outlet where Sannae River combining various small rivers escapes the basin. High mountains distribute at southwestern, southern and southeastern divides of the basin consisting of hornfels, while hilly mountains are found at northern divide consisting of sedimentary rock. Alluvial fans and flood plains occupy bottom of the basin. While extensive alluvial fans are found at the front of southern divide where rivers with large drainage areas rise, alluvial fans toward eastern and western divides become small due to low elevation of divides. Flood deposits by Hwang River are attributed to development for most of flood plains at northern part of the basin. The basin seems to be developed not by differential erosion or meteorite impact, but by bedrock weathering along lineament or fault lines by ground motion.

  • PDF

Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • This study attempted to study the soil erosion dynamic in the Bagmati Basin of Nepal. In this study, an inclusive methodology that combines Revised Universal Soil Loss Equation (RUSLE) and GIS techniques was adopted to determine the distribution of soil loss in the study basin. As well, this study attempts to study the intensity of soil erosion in the seven different land use patterns in the Bagmati Basin. Soil loss is an associated phenomenon of hydrologic cycle and this dynamic phenomenon possesses threats to sustainability of basin hydrology, agriculture system, hydraulic structures in operation and overall ecosystem in a long run. Soil conservation works, and various planning and design of watersheds works demands quantification of soil loss. The results of the study in Bagmati Basin shows the total annual soil loss in the basin is 22.93 million tons with an average rate of 75.83T/ha/yr. The computed soil loss risk was divided into five classes from tolerable to severe and the spatial pattern was mapped for easy interpretation. Also, evaluation of soil loss in different land use categories shows barren area has highest rate of soil loss followed by agriculture area. This is a preliminary work and provides erosion risk scenario in the basin. The study can be further used for strategic planning of land use and hydrologic conservation works in a basin.

Scaled Down Experiment of Retention Basin with a Rotatable Bucket Using 3D Printer (3D 프린터를 이용한 회전 버킷이 부착된 저류조의 모형 실험)

  • Park, Seong-Jik;Lee, Chang-Gu;Lee, Jemyung;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.49-55
    • /
    • 2017
  • Recently climate change and urbananization have been increased surface runoff, resulting in flooding. Retention basins have been constructed to control urban flooding by reducing peak flow rate. Recently, the retention basin plays a role in controlling combined sewer overflows (CSOs) as well as urban flooding. In this study, the retention basin with a rotatable bucket was suggested and scale down experiments was performed for the optimum design of the retention basin. Scaled down model was produced using a 3D printer after it was designed as law of similarity. Two times for operating a rotary bucket is required to sweep out the sediments deposited on the bottom of the basin. Optimized dimensions for the retention basin were width of 5 m, height of 5 m, bucket radius of 0.5 m, and bottom slope of 5.0 %. It can be concluded that the results obtained from this study can be used to design the retention basin with a rotatable bucket which does not require energy to operate.

Water Purification Characteristics of Sedimentation Basin for Agricultural Water Quality Improvement (농업용수 수질개선을 위한 침강지의 수질정화 특성)

  • Kim, Hyungjoong;Kim, Donghwan
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • A sedimentation basin for agricultural water quality improvement was researched to analyze the water quality purification characteristics. The sedimentation basin constructed at the inlet of Gamdon reservoir in Muan-gun, Jeollanam-do was selected as the research field of this study. The surface area of the sedimentation basin is $34,000m^2$, volume is $122,000m^3$, and hydraulic retention time is 0.3hr~7.3day. The average influent loading of SS was 156.6kg-SS/d, and the effluent loading was 67.5kg-SS/d with the average removal rate of 56.9%. The average influent loadings of BOD and COD were 33.0kg-BOD/d and 60.3kg-COD/d respectively, and the effluent loadings were 26.4kg-BOD/d and 48.6kg-COD/d with the average removal rate of 20.1% and 19.3% respectively. Therefore, the results of this study show that a sedimentation basin can purify SS and organic matters. The average influent loadings of T-N and T-P were 28.7kg-TN/d and 2.97kg-TP/d respectively, and the effluent loadings were 16.3kg-TN/d and 1.41kg-TP/d with the average removal rate of 43.0% and 52.6% respectively. In conclusion, the overall results of this study show that a sedimentation basin is a feasible alternative to purify organic matters and nutrients.

  • PDF

Development of NH3 Emission Factors using a Dynamic Flux Chamber in a Sewage Treatment Plant (부유형 챔버를 이용한 하수처리장에서의 암모니아 배출 특성 연구)

  • Jeon, Eui-Chan;Sa, Jae-Hwan;Park, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.263-273
    • /
    • 2005
  • In this study, the major emission procedures and emission characteristics were identified at the site of sewage treatment plant which is one of the major sources of ammonia. At the same time the emission factors and emission rates were estimated. In order to calculate the emission flux, we used a Dynamic Flux Chamber(DFC), which is found to be a proper sampling devise for area sources such as sewage treatment plant. It was found that the most stable sampling condition was when the stirrer's speed of DFC was 120RPM, and it would be the best time to take a sample 60 minutes later after setting the chamber. The relatively higher flux was shown in Autumn compared to summer and winter. Annual ammonia emission rates procedures were calculated as $906.32{\mu}g/activity-ton$, $1,114.72{\mu}g/activity-ton$ and $437.53{\mu}g/activity-ton$ each at the primary settling basin, aeration basin and the final settling basin, respectively. The ammonia emission rate the highest at in the aeration basin according to this test. This results was due to that the surface of aeration basin or the final settling basin is relatively wider than the primary settling basin.

Optimization of distribution basin and ratio at valve opening in the water treatment process (정수공정에서 분배조 및 밸브 개도율 최적화)

  • Cho, Youngman;Ryu, Dongchoon;Yoo, Pyungjong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.559-564
    • /
    • 2015
  • Distribution basins are used widely in the water treatment process. Uniform distribution at the distribution basin is an important because it affect precipitation efficiency of sedimentation basin. Generally distribution basin has a free surface water and is consisted of a weir. Study result, when inflow of distribution basin is less, amount of overflow is much at the nearest weir from the inlet. But when inflow is much, amount of overflow is much at the far weir from the inlet. The difference of distribution amount at the pipe is affected by the curvature and length of the pipe. The magnitude of the effect is determined by the relative energy loss and the flow state of the distribution basin. Optimization of the response surface method for minimizing an amount of deviation of the distribution is a very useful technique to determine the optimal ratio of the valve opening.

Improved Parameter Computation Method Applications of Storage Function Model for the Han River Basin (저류함수모형 매개변수 산정 개선방법의 한강유역 적용)

  • Jeong, Dong-Kug;Jeon, Yong-Woon;Lee, Beum-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.149-158
    • /
    • 2008
  • The parameters of each basin, required for the accurate analysis of flood runoff using Storage Function Model, are estimated. Prior to the estimation, sensitivity analysis and extraction of new regional topographic factors for Han River basin are conducted. Based on the result, the outflow constant of basin model is calculated through regression analysis in relation with pre-flood runoff depth. The storage constant of basin model is derived by the optimum storage constant equation, according to the flood event of each basin. The model using the mentioned parameters was compared with K-Water model of Korea Water Resources Corporation and the model of Han River Flood Control Office, and proved to correspond to the observed hydrograph more.

River Terraces and Geomorphic Development of Subi Basin, Yeongyang (하안단구와 수비분지의 지형발달)

  • Son, Myoung Won
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Subi basin is located at the crestline of Taebaek mountains. This paper aims to elucidate the geomorphic development of Subi basin through the analysis of river terraces built in Wangpi-cheon and Banbyeon-cheon. Wangpi-cheon flows northeastward from Subi basin, and Banbyeon-cheon flows southward at the west of Subi basin. Absolute age of terrace is measured by means of OSL methodology, long profile of Wangpi-cheon is made up with 10m interval contour line, and the elevation above river bed of high terraces is measured at the end part of terrace. The results are as follow: Firstly, high river terraces of Subi basin, Wangpi-cheon and Banbyeon-cheon are formed about 40 kyr(MIS 3) being interstadial stage of last glacial period. Secondly, the elevation above river bed of high terraces of Wangpi-cheon and Banbyeon-cheon tends to increase toward upstream. It means that the uplift of Taebaek Mountains influences considerably the formation of their terraces. Thirdly, the elevation above river bed of high terraces at the reach from Seomchon to Suha-ri of Wangpi-cheon tends to decrease toward upstream. This section is captured from Banbyeon-cheon flowing in the opposite direction. River piracy has occurred from the time of formation of Suha-ri high terrace to the time of formation of Hantee wind gap. Finally, for fluvial system of Wangpi-cheon to establish dynamic equilibrium, topographic axis will move toward Banbyeon-cheon.