• Title/Summary/Keyword: Basic catalyst

Search Result 200, Processing Time 0.028 seconds

Polymerization of Hydrosilanes and Vinyl Monomers in the Presence of Transition Metal Complex

  • Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Shin, Joong-Hyeok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-co-silane)s with $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., $AgNO_3$, $Ag_2SO_4$, $HAuCl_4$, $H_2PtCl_6$) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. $Cp_2M/CX_4$ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using $Cp_2M/CCl_4$ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by $Cp_2M/CCl_4$ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe$ > $Cp_2Ni$ > $Cp_2Co$, the molecular weight decreases in the order $Cp_2Co$ > $Cp_2Ni$ > $Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not living. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.

  • PDF

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

SynGas Production from Propane using GlidArc Plasma Reforming (부채꼴방전 플라즈마 개질을 이용한 프로판으로부터의 합성가스 생산)

  • Song, Hyoung-Oon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.323-328
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the GlidArc-assisted $C_3H_8$ reforming reaction for the synthesis gas(SynGas) production without formation of carbon black from propane using GildArc plasma reforming. Also, in order to increase the hydrogen production and the propane conversion rate, 13 wt % nickel catalyst was filled into the catalytic reactor and parametric screening studies were conducted, in which there were the variations of vapor mole ratio$(H_2O/C_3H_8),\;CO_2$ mole ratio($CO_2/C_3H_8$), input power and injection flow rate. When the variations of vapor mole ratio, $CO_2$ mole ratio, input power and injection flow rate were 1.86, 0.48, 1.37 kW and 14 L/min, respectively, the conversion rate of the propane reached its most optimal condition, or 62.6%. Under the condition mentioned above, the dry basic concentrations of the SynGas were $H_2\;44.4%,\;CO\;18.2%,\;CH_4\;11.2%,\;C_2H_2\;2.0%,\;C_3H_6\;1.6%,\;C_2H_4\;0.6%\;and\;C_3H_4$ 0.4%. The conversion rate of carbon dioxide was 29.2% and the concentration ratio of hydrogen to carbon monoxide($H_2/CO$) in the SynGas was 2.4.

A study on recovery of Platinum Group Metals(PGMs) from spent automobile catalyst by melting technology (용융기술(熔融技術)을 이용(利用)한 자동차폐촉매(自動車廢觸媒)에서의 백금족(白金族) 금속(金屬) 회수(回收) 연구(硏究))

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • The dry method and wet method are currently used for the recovery of platinum group metals (Pt, Rh, Pd) contained in spent automobile catalysts. The study herein aims to identify the melting condition and optimum collector metal in accordance with a comparison of each concentration change in melting waste catalysts, using Fe and Cu in a basic experiment to recover waste catalysts through application of the dry melting method. As a summarized result of the experiment herein, it was determined to be more advantageous to use Fe as a parent material rather than Cu from the aspect of recollection rate, and the concentration change rate of platinum group metals within slag was greatly enhanced at $1,600^{\circ}C$ melting condition rather than at $1,500^{\circ}C$ in terms of melting processing temperature. The mean concentration of platinum group metals - Rh, Pd and Pt - within slag after a melting process at $1,600^{\circ}C$ were 6.21 ppm, 5.98 ppm and 6.97 ppm. The Rh and Pd were 50.58% and 55.31% respectively greater than the concentration change rate of platinum group metals in slag at a melting temperature of $1,500^{\circ}C$. However, since the initial concentration of Pt within the waste catalysts was 12.9 ppm, is relatively low, it was difficult to compare concentration change rates after the melting process.

Exploring COVID-19 and Meaning in Life (COVID-19와 삶의 의미 탐구)

  • Bae, Na-Rae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • This study discussed its implications for the meaning in life, which began to emerge through existential psychotherapy in the era of coronavirus infection 19 (COVID-19). In the midst of the COVID-19 pandemic, we are making efforts to live a meaningful life, and individuals and communities are making efforts to find meaning in how to live a meaningful life. Humanity has a premise for a peaceful life, and since the past, interest in the meaning in life has continued. The deadly virus called COVID-19, which hit the world in December 2019, created stress such as anxiety, alienation, and depression in people, endangering the lives of individuals and communities. Research on the meaning in life was active even before COVID-19, but I think it is necessary to look at the changes in people's meaning in life and how COVID-19 is affecting each individual amid the global pandemic of the virus. In other words, clarifying the meaning of our lives in the era of COVID-19 is a coping to reduce stress and a catalyst to improve the quality of life. This study aims to provide basic research to prepare ways to improve the quality of life in the era of COVID-19 by examining various perspectives and results on the meaning in life.

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid (루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구)

  • Yang, Seungdo;Kim, Hyungjoo;Park, Jae Hyun;Kim, Do Heui
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.

Study on the Silicone Contact Lens Using AA and BMA (AA(Acrylic acid)와 BMA(Butyl methacrylate)를 이용한 실리콘 콘택트렌즈에 관한 연구)

  • Kim, Tae-Hun;Yae, Ki-Hun;Kweon, Young-Seok;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.259-265
    • /
    • 2006
  • We polymerized material of AA(Acrylic acid) and BMA(butyl methacrylate) to make up for the weak points of hydrogel contact lens. The synthesis process of silicone synthesis is as follows. Acrylate-PDMS(Polydimethylsiloxane)-Urethane prepolymer was composed after Diisocynate reacted with HEMA(2-hydroxyethylmethacrylate) under the catalyst and it reacted again with bis(hydroxyalkyl) terminated poly(dimethylsiloxane) with high oxygen transmissibility characteristics. HEMA(2-hydroxyethylmethacrylate) was used to make prepolymer that can be polymerized and the urethane was used to improve elasticity and oxygen transmissibility, copolymerization was performed with conventional hydrogel contact lens materials to make silicone hydrogel contact lens with higher oxygen transmissibility. For manufacturing of contact lens, We added BMA(Butyl methacrylate) with better elasticity and flexibility, and AA(Acrylic acid) with higher moisturizing to used contact lens materials. AIBN (Azobis2-methylpropionitrile) as initiator and EGDMA(Ethylene Glycol Dimethacrylat) as crosslinking agent were used and the lens with higher oxygen transmissibility and better moisturizing were manufactured complying with basic contact lens properties, which have several combination trial of each monomer characteristics. Compounding SN which included SILICONE, HEMA, NVP and EGDMA etc was showed by swelling ratio of 9.38% and water content of 23.7%. SN was showed by swelling ratio of 9.38%, water content of 23.7% and a visible ray transmissibility of 89%. SB which added BMA in the SN was showed by swelling ratio of 12.50%, water content of 18.56% and a visible ray transmissibility of 88%. SAB which added both AA and BMA in the SN was showed by swelling ratio of 8.33%, water content of 12.93% and a visible ray transmissibility of 88%.

  • PDF

Review of Domestic Research Trends on Layered Double Hydroxide (LDH) Materials: Based on Research Articles in Korean Citation Index (KCI) (이중층수산화물(layered double hydroxide, LDH) 소재의 국내 연구동향 리뷰: 한국학술지인용색인(KCI)에 발표된 논문을 대상으로)

  • Seon Yong Lee;YoungJae Kim;Young Jae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.23-53
    • /
    • 2023
  • In this review paper, previous studies on layered double hydroxides (LDHs) published in the Korean Citation Index (KCI) were examined to investigate a research trend for LDHs in Korea. Since the first publication in 2002, 160 papers on LDHs have been published until January 2023. Among the 31 academic fields, top 5 fields appeared in the order of chemical engineering, chemistry, materials engineering, environmental engineering, and physics. The chemical engineering shows the highest record of published paper (71 papers) while around 10 papers have been published in the other four fields. All papers were reclassified into 15 research fields based on the industrial and academic purposes of using LDHs. The top 5 in these fields are in order of environmental purification materials, polymer catalyst materials, battery materials, pharmaceutical/medicinal materials, and basic physicochemical properties. These findings suggest that researches on the applications of LDH materials in the academic fields of chemical engineering and chemistry for the improvement of their functions such as environmental purification materials, polymer catalysts, and batteries have been being most actively conducted. The application of LDHs for cosmetic and agricultural purposes and for developing environmental sensors is still at the beginning of research. Considering a market-potential and high-efficiency-eco-friendly trend, however, it will deserve our attention as emerging application fields in the future. All reclassified papers were summarized in our tables and a supplementary file, including information on applied materials, key results, characteristics and synthesis methods of LDHs used. We expect that our findings of overall trends in LDH research in Korea can help design future researches with LDHs and suggest policies for resources and energies as well as environments efficiently.