• Title/Summary/Keyword: Basement damper

Search Result 5, Processing Time 0.027 seconds

Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses (초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가)

  • Kim, Young-Bae;Kim, Jae-Hong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

The Ventilation Plane Due to Smoke Driving Combined Forces in Super High-Rise Buildings (초고층 건물에서 연기이동 복합력에 의한 환기계획)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.82-87
    • /
    • 2016
  • The ventilation system for the efficient operation of the building services systems in the ventilation plan of super high-rise buildings is used to combine smoke control systems. This study evaluated models of super high-rise buildings with four basement levels and 59 stories and investigated the pressure distribution of each floor by the smoke driving forces by numerical analysis. The smoke driving forces on the building of analytical model was analyzed to determine the effects of the ventilation plan and smoke control plane. In addition, when a combination with ventilation and smoke control of the kitchen ventilation damper in the ventilation plan of analysis model building was designed based on the these results, the relationship between the opening and closing force of the damper and smoke driving combined forces to act on the design pressure of the damper by a motion analysis simulation. The driving units of the damper were selected from the analytical results.

Structural Design of High-Rise Concrete Condominium with Wall Dampers for Vibration Control

  • Tsushi, Takumi;Ogura, Fumitaka;Uekusa, Masahiro;Kake, Satoshi;Tsuchihashi, Toru;Yasuda, Masaharu;Furuta, Takuya
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 2019
  • This paper presents a structural design of the "(Tentative Name) Toranomon Hills Residential Tower" which is currently under construction in Tokyo. The building is a reinforced concrete high-rise residential complex building with 54 stories above ground, 4 basement levels, and a building height of about 220 m. It is a requirement to provide the highest grade of residence in Japan, and in terms of the structural design, it is required to provide wide and comfortable spaces with high seismic performance. These requirements are satisfied by providing a total of 774 vibration control walls of two types. Also, to further improve the structural performance, steel fibers at the rate of 1.0vol% are provided in the ultra-high strength concrete used in the column members.

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

Structural Design and Performance Evaluation of a Mid-story Seismic Isolated High-Rise Building

  • Tamari, Masatoshi;Yoshihara, Tadashi;Miyashita, Masato;Ariyama, Nobuyuki;Nonoyama, Masataka
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2017
  • This paper describes some of the challenges for structural design of a mid-story seismic isolated high-rise building, which is located near Tokyo station, completed in 2015. The building is a mixed-use complex and encompasses three volumes: one substructure including basement and lower floors, and a pair of seismic isolated superstructures on the substructure. One is a 136.5m high Main Tower (office use), and the other is a 98.5 m high South Tower (hotel use). The seismic isolation systems are arranged in the $3^{rd}$ floor of the Main Tower and $5^{th}$ floor of the South Tower, so that we call this isolation system as the mid-story seismic isolation. The primary goal of the structural design of this building was to secure high seismic safety against the largest earthquake expected in Tokyo. We adopted optimal seismic isolation equipment simulated by dynamic analysis to minimize building damage. On the other hand, wind-induced vibration of a seismic isolated high-rise building tends to be excited. To reduce the vibration, the following strategies were adopted respectively. In the Main Tower with a large wind receiving area, we adopted a mechanism that locks oil dampers at the isolation level during strong wind. In the South Tower, two tuned mass dampers (TMDs) are installed at the top of the building to control the vibration. In addition, our paper will also report the building performance evaluated for wind and seismic observation after completion of the building. In 2016, an earthquake of seismic intensity 3 (JMA scale) occurred twice in Tokyo. The acceleration reduction rate of the seismic isolation level due to these earthquakes was approximately 30 to 60%. These are also verified by dynamic analysis using observed acceleration data. Also, in April 2016, a strong wind exceeding the speed of 25m/s occurred in Tokyo. On the basis of the record at the strong wind, we confirmed that the locking mechanism of oil damper worked as designed.