• Title/Summary/Keyword: Baseband Receiver Design

Search Result 42, Processing Time 0.018 seconds

Analysis of Human Body Channel Based on Impulse Response Signals (임펄스 응답 신호를 이용한 인체 채널 분석)

  • Kang, Taewook;Lee, Jae-Jin;Oh, Wangrok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • This study presents an analysis of the human body channel as an electric signal path using body impulse response (BIR). The human body communications (HBC) has recently emerged as an effective signal transmission method to create wireless body area networks (WBAN). We provide body channel characteristics based on measured BIR in a proper experimental environment for the HBC using capacitive coupling with a customized channel sounding device, which can be applied as a guideline for the HBC system design. The frequency response of the BIR, extracted by a customized signal processing for the measure signals, shows the channel path loss (CPS) between 0 MHz and 100 MHz with an average CPS of approximately 46.8 dB. In addition, the relative noise power distributions can provide estimations on the signal to noise ratio at the HBC receiver in terms of capacitor and resistor values in the measured frequency band and the frequency band lower than 3 MHz considering the baseband signal detection.

Design and Implementation of 5G mmWave LTE-TDD HD Video Streaming System for USRP RIO SDR (USRP RIO SDR을 이용한 5G 밀리미터파 LTE-TDD HD 비디오 스트리밍 시스템 설계 및 구현)

  • Gwag, Gyoung-Hun;Shin, Bong-Deug;Park, Dong-Wook;Eo, Yun-Seong;Oh, Hyuk-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • This paper presents the implementation and design of the 1T-1R wireless HD video streaming systems over 28 GHz mmWave frequency using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system uses USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transceived from USRP RIO up or down converts to 28 GHz by using self-designed 28 GHz RF transceiver modules and it is finally communicated HD video data through self-designed $4{\times}8$ sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express ${\times}4$ to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 25.85 dBc and to transceive HD video in experiment environment anywhere.