• Title/Summary/Keyword: Base stations

Search Result 633, Processing Time 0.027 seconds

A Base Station Clustering Method Based on Sequential Selection Approach (순차적 선택 기반의 전송 기지국 클러스터 형성 방법)

  • Yoo, Hyung-Gil;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we propose an efficient method to create clusters of geographically distributed base stations which cooperatively transmit signals in cellular mobile communication systems. The proposed method utilizes a sequential selection approach to choose candidate base stations which can provide maximum weighted sum-rate gain when they participate in the cooperative transmission with the existing cluster. In particular, the proposed method limits the maximum number of base stations in a cluster by considering the system operational and implementation complexities. Moreover, the combinations of clusters dynamically change along with variations of channel environments. Through computer simulations, performance of the proposed method is verified by comparing with the non-cooperative transmission method and the static clustering method. Numerical result shows that the proposed sequential selection based clustering method is especially advantageous for the performance improvement of lower percentile users in terms of average throughput, and thus the proposed method can effectively improve the fairness among users.

Distributed File Placement and Coverage Expansion Techniques for Network Throughput Enhancement in Small-cell Network (소형셀 네트워크 전송용량 향상을 위한 분산 파일저장 및 커버리지 확장 기법)

  • Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.183-189
    • /
    • 2018
  • This paper proposes distributed file placement and coverage expansion techniques for mitigating the traffic bottleneck in backhaul for small-cell networks. In order to minimize the backhaul load with limited memory space, the proposed scheme controls the coverage and file placement of base station according to file popularity distribution and memory space of base stations. In other words, since the cache hit ratio is low when there is small memory capacity or widespread file popularity distribution, the base stations expand its coverage and cache different set of files for the user located in overlapped area to exploit multiple cached file sets of base stations. Our simulation results show that the proposed scheme outperforms the conventional cache strategy in terms of network throughput when there is small memory capacity or widespread file popularity distribution.

Improvement of Relative Positioning Accuracy with GPS Carrier Phase Using Multi-Base Station (다중기준국 방식을 이용한 GPS 반송파 상대측위 정확도 향상)

  • Lee, Jae-One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.617-624
    • /
    • 2008
  • In general, RTK-GPS(Real Time Kinematic GPS) based on the single reference station is able to determinate the high accurate position of rover on the spot using error correction information of transmitted carrier phase from the base station via wireless modem. However, single reference station method has some weak points to decrease positioning accuracy because it must be obtained carrier phase from the each satellite continuously, allowed to transmit without obstacle and limited to short base line distance between base and rover station. This paper aims to attempt network based GPS carrier phase differential positioning using three multi reference stations to overcome the method of single reference station and RTK network is realized by real time monitoring program with Visual C++. The optimum error correction value of three multi reference stations by RTK networking is selected automatically to correct the position of rover station. In this paper, this algorithm is applied to determine sea water level using GPS buoy, and the accuracy results of water level change were analyzed and compared with each other using single and multi reference stations.

Analysis of Spatial Multiplexing Gain in a Two-cell MIMO Environment with Coordinated Base Stations (협력 기지국을 가진 2-셀 다중 안테나 환경에서 공간적 다중화 이득 분석)

  • Kim, Jae-Sin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.376-383
    • /
    • 2012
  • In this paper, we provide a general expression of spatial multiplexing gain (SMG) for two mutually interfering multiple-input multiple-output (MIMO) broadcast channels, referred to as MIMO-IBC, when some of user messages are made available to base stations through a common noiseless backbone line. The MIMO-IBC has two base stations and multiple users, each equipped with multiple antennas, where independent messages are transmitted over fixed channels. From the derived results, we observe the variation of the SMG with respect to the presence of a coordination as well as various antenna distributions, and compare the derived result to the SMG of the case with full cooperation among users.

Fast Group Scanning Scheme in IEEE 802.16e Networks (IEEE 802.16e에서 그룹 기반의 빠른 스캐닝 기법)

  • Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.624-634
    • /
    • 2008
  • The mobile station which is about to do handover in IEEE 802.16e networks scans its neighboring base station channels to decide its next target base station. However, due to the lack of location information of its subscribers, the serving base station cannot provide any reliable candidate channel which is actually attachable by the scanning mobile stations, which makes the mobile station suffer from the long scanning time. Sometimes, long scanning time may cause the degradation of quality of service due to repeatable scan-duration or failure to start the handover procedure in time. To overcome these problems, in this paper, we propose a new protocol so called fast group scanning scheme, in which multiple mobile stations form a group to scan their neighboring base station channels simultaneously. Main contribution of this proposal is to find and decide a reliable target base station within a short scanning time. The fast group scanning scheme can be deployed to the cell network of the serving base station with a dynamic neighboring base station list management.

Comparison of NTP and Master-Slave Network Synchronization Methods in in-door Environment (실내 망 동기화를 위한 NTP와 Master-Slave 방식의 비교)

  • Lee Hyojung;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • Location Positioning is a major technology for ubiquitous computing. Recently the research on Location Positioning using UWB is on going. In order to construct an in-door location network, synchronization of base stations is very important. NTP is Popularly used as clock synchronization protocol ranging from LAN to WAN. Also Master-Slave scheme is the simplest method to synchronize in-door network. We compare and analyze NTP and Master-Slave schemes according to the statistical channel model for indoor multipath propagation environment. In this paper, error ranges are calculated at various circumstances that in-door network expands from one primary base station into several base stations. We compared the correctness of NTP and Master-Slave synchronization methods. NTP is more reasonable synchronization protocol in in-door environment.

Seismic Research Network in KIGAM (한국자원연구소 지진 네트워크)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.49-56
    • /
    • 2000
  • Instrumental observation of earth quakes in KIGAM was first attempted in the earty 1980`s by using 6 portable seismographs in the vicinity of Yang-San Faults. Now twenty-four permanent stations, which are equipped with short-period or broad-band seismometer, are included in seismic research network in KIGAM, including KSRS array station in Wonju which is consisted of 26 bore-hole stations. The seismic network of KIGAM is also linked to that of KEPRI(Korea Electric Power Research Institute)which is consisted of eight stations installed within and around the nuclear power plants. Owing to real-time data acquisition by telemetry, it became feasible to automatically locate hypocenters of the local events within fifteen minutes by computer data processing system, named KEMS(Korea Earthquake Monitoring System). Results of the hypocenter determination, together with observational data, are compiled and stored in the data base system. And they are published via web site whose URL is http://quake.kigam.re.kr KIGAM is also running t재 permanent geomagnetic stations installed in Daejun and Kyungju. The observed geomagnetic data are transmitted to Earthquake Research Centre in KIGAM by seismic network and compiled for the purpose of earthquake prediction research and other basic geophysical research.

  • PDF

Transmission Capacity Analysis for Cellular Systems Using Antenna Arrays and Wireline Relay Stations (안테나 어레이와 유선 Relay Station을 활용한 셀룰러 시스템의 전송 용량 분석)

  • Kim, Yu-Sin;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.689-695
    • /
    • 2007
  • Wireline relay stations(RS's) are connected to cellular base stations(BS's) via radio-over-fiber(RoF) to enhance system capacity and to reduce shadow areas. Unlike wireless multi-hop systems, BS-to-RS signaling is transmitted out-of-band, thus reducing the effect of interference caused by frequency reuse. In this paper, antenna arrays used in addition to the wireline RS's are considered to evaluate the transmission capacity gain and performance variations according to the may structures. In particular, RS locations to maximize the gain, may distribution patterns for a given number of antenna elements, performance enhancement for a varying number of elements are experimentally determined to suggest a proper utilization of antenna ways in conjunction with wireline RS's.

BandBlock: Bandwidth allocation in blockchain-empowered UAV-based heterogeneous networks

  • Kuna Venkateswarararao;Pratik Kumar;Akash Solanki;Pravati Swain
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.945-954
    • /
    • 2022
  • The 5G mobile network is promising to handle the dynamic traffic demands of user equipment (UE). Unmanned aerial vehicles (UAVs) equipped with wireless transceivers can act as flying base stations in heterogeneous networks to ensure the quality of service of UE. However, it is challenging to efficiently allocate limited bandwidth to UE due to dynamic traffic demands and low network coverage. In this study, a blockchain-enabled bandwidth allocation framework is proposed for secure bandwidth trading. Furthermore, the proposed framework is based on the Cournot oligopoly game theoretical model to provide the optimal solution; that is, bandwidth is allocated to different UE based on the available bandwidth at UAV-assisted-based stations (UBSs) with optimal profit. The Cournot oligopoly game is performed between UBSs and cellular base stations (CBSs). Utility functions for both UBSs and CBSs are introduced on the basis of the available bandwidth, total demand of CSBs, and cost of providing cellular services. The proposed framework prevents security attacks and maximizes the utility functions of UBSs and CBSs.

Trends in 5G Radio Access Network Technologies Based on mmWave (mmWave 기반 5G RAN 기술 동향)

  • Lee, N.S.;Park, M.H.;Choi, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.85-96
    • /
    • 2017
  • The research, design, and development of wireless access technologies using the new 6 to 100GHz band mmWave are actively underway in order to address the frequency shortage problem in the sub-6GHz band and accommodate the 5G technical requirements, such as the increased transmission capacity. Technical elements to efficiently overcome the problems caused by mmWave signal characteristics, support an effective interworking with a conventional communication service, and ensure smooth mobility between mmWave base stations and existing base stations are also being investigated. This paper discusses the technical solutions for an mmWave-based 5G RAN configuration and their considerations under various operational scenarios.