• Title/Summary/Keyword: Base metal alloy

Search Result 345, Processing Time 0.024 seconds

Study on Base metal Alloy (Base metal Alloy에 관한 고찰(考察))

  • Sung, Hwan-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.53-59
    • /
    • 1985
  • This paper aims to examine baes metal alloy in all its aspects - the roles of elements, the content of every element according to uses, characters, laboratory technique methods and the kind of artificial base metal alloy registered in A.D.A. Specification. The results are as follows; 1. Base metal alloy is used widely bacaues it is rather cheap, but it should be handled appropriately in operating because its quality is bad. 2. Classifying base metal alloy, it is classified into Co-Cr alloy, Ni-Cr alloy, and Ni-Cr-Co alloy according to element, it is classified into partial denture alloy, surgical alloy and crown & bridge alloy according to use. 3. Among elements of base metal alloy, Bellium lowers the melting point of the alloy and increases the strength, but the amount should be limited when it is used because it destroys the organization of a living body. 4. The investments for base metal alloy are ethyl silcate bonded investment and phosphate bonded investment which endure well at high burn out temperature. 5. A.D.A specification No.14 in Kore contains Niranium, Nobilium, regalloy, Ticonium and Vitallium.

  • PDF

Characteristics of Liquid Phase Diffusion Bonded Joints Using Newly Developed Ni-3Cr-4Si-3B Insert Metal of Heat Resistant Alloy (신개발 Ni-3Cr-4Si-3B 삽입금속으로 액상확산접합한 내열주강 접합부의 특성)

    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.62-67
    • /
    • 2000
  • Metallurgical characteristics of bonded region and high temperature mechanical properties of heat resistant alloy, Fe-35Ni-26Cr during liquid phase diffusion bonding were investigated employing AM17 insert metal. The insert metal for bonding, AM17 was newly developed Ni-base metal using interpolation method. Bonding of specimens were carried out at 1,403~1,463K for 600s in vacuum. The microconstituents in the bonded interlayer disappeared in the bonding temperature over 1,423K. The microstructures, alloying elements and hardness distribution in the base metal. The tensile strength and elongation of the joints at elevated temperatures were the same level as one of the base metal in the bonding temperature over 1,423K. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

EFFECT OF GOLD ELECTRODEPOSIT ON THE BOND STRENGTH BETWEEN ALLOYS AND VENEERED RESIN (금전착이 치과용 합금과 전장 레진간의 접착 강도에 미치는 영향)

  • Yang, Hong-So;Park, Yeong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.103-117
    • /
    • 1997
  • The purpose of this experiment was to determind whether the gold electrodeposit on Pd-Ag and Ni-Cr alloys influences on the shear bond strength between veneering resin and silicoated metal surface. All the metal specimens were sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating and resin veneering. According to the metal surfaces to be veneered, experimental groups were divided into five. Group Prec : Gold alloy without gold coating Group Semi : Pd-Ag alloy without gold coating Group Base : Ni-Cr alloy without gold coating Group Semi-G : Pd-Ag alloy with gold coating Group Base-G : Ni-Cr alloy with gold coating All specimens were thermocycled 1,000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of gold electrodeposit on the shear bond strength between resin and metal interface were measured and fractured surface of the resin veneered metal was examined under the scaning electron microscope. The following results were obtained 1. The shear bond strength between resin and metal was $64.51{\pm}11.11Kg/cm^2$ in Prec group, $62.77{\pm}11.23Kg/cm^2$ in Base group and $58.97{\pm}9.20Kg/cm^2$ in Semi Group. There was no significant difference among the groups. 2. The bond strength in groups Semi-G and Base-G decreased about 17%, compared to the nongold-electrodeposit groups(Semi, Base). 3. In groups of non electrodeposit(Prec, Semi, Base), fracture occurred at the interface between alloy and resin, while fracture interface was observed between gold coating and resin in group Semi-G, and between metal substrate and gold coating in group Base-G respectively.

  • PDF

Electron beam weldability of titanium alloy (타이타늄합금의 전자빔용접성)

  • Lee, Chae-Hun;Yun, Jong-Won;Park, No-Gwang
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.13-17
    • /
    • 2007
  • Electron beam weldability was investigated for 1mm thick cold rolled sheets of commercially pure grade titanium and Ti-6Al-4V alloy. Accelerating voltage of 40kV, beam current of 6mA, and weld speed of 0.8m/min was used and focal position of focused electron beam was just on the surface of workpiece. Microstructure of weld metal, the heat affected zone and base metal was observed using optical microscope. Vickers hardness was measured across the welds and the transverse tensile test was carried out. Hydroformability test was also carried out for the butt welded coupons of commercially pure grade titanium. For the electron beam welded C P Ti, the average grain size was equiaxed $\alpha(15{\sim}25{\mu}m)$ for base metal, coarse equiaxed $\alpha(80{\sim}200{\mu}m)$ for weld metal and annealed and enlarged grain($40{\sim}120{\mu}m$) for the HAZ. The vickers hardness of C P Ti was $180{\sim}200Hv$ for base metal, and $160{\sim}180Hv$ for the weld metal and the HAZ. For the electron beam welded Ti-6Al-4V alloy, the vickers hardness was 360Hv for the base metal, abd $400{\sim}425Hv$ for the weld metal and the HAZ. All the failure occurred at the base metal, when the transverse weld tensile test was carried out for both electron beam welded C P Ti and Ti-6Al-4V alloy. The formability of electron beam welded C P Ti was decreased compared with that of C P Ti base alloy.

  • PDF

A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy (2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

Computer-Aided Alloy Design of Insert Metal for Transient Liquid Phase Bonding of High Aluminum Ni-base Superalloys

  • Nishimotd, Kazutoshi;Saida, Kazuyoshi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.803-808
    • /
    • 2002
  • A computer-aided alloy-designing technique to develop the insert metal for transient liquid phase (TLP) bonding was applied to high aluminum Ni-base superalloys. The main procedure of a mathematical programming method was to obtain the optimal chemical composition through rationally compromising the plural objective performances of insert metal by a grid-search which involved data estimation from the limited experimental data using interpolation method. The objective function Z which was introduced as an index of bonding performance of insert metal involved the melting point, hardness (strength), formability of brittle phases and void ratio (bonding defects) in bond layer as the evaluating factors. The contour maps of objective function Z were also obtained applying the interpolation method. The compositions of Ni-3.0%Cr-4.0%B-0.5%Ce (for ${\gamma}$/${\gamma}$/${\beta}$ type alloy) and Ni3.5%Cr-3.5%B-3%Ti (for ${\gamma}$/${\gamma}$ type alloy) which optimized the objective function were determined as insert metal. SEM observations revealed that the microstructure in bond layers using the newly developed insert metals indicated quite sound morphologies without forming microconstituents and voids. The creep rupture properties of both joints were much improved compared to a commercial insert metal of MBF-80 (Ni-15.5%Cr-3.7%B), and were fairly comparable to those of base metals.

  • PDF

An Experimental Investigation on Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints (Alloy 617 모재와 용접부재의 저사이클피로 거동에 관한 실험적 고찰)

  • Choi, Pil-Ho;Kim, Seon-Jin;Kim, Woo-Gon;Kim, Min-Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.115-121
    • /
    • 2014
  • Alloy 617 is the one of the leading candidate materials for intermediate heat exchangers(IHX) of a very high temperature reactor(VHTR) system. Some of the components are joined by many welding techniques and therefore the welded joints are inevitable in the construction of systems. In the present paper, the low cycle fatigue(LCF) behaviors of Alloy 617 base metal(BM) and the gas tungsten arc welded (GTAWed) weld joints(WJ) are investigated experimentally under strain controlled LCF tests. Fully axial total-strain controlled tests have been conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The weld joints have shown a lower fatigue lives compared with base metals at all the testing conditions. The weld joints have shown a higher cyclic stress response behavior than base metal. Both BM and WJ exhibited cyclic strain hardening behavior, depending on the total strain range. In addition, the strain-life parameters for BM and WJ were determined, based on Coffin-Manson equations.

Corrosion of the non-beryllium dental casting Ni-Cr alloys for the denture base framework metal and the porcelain-fused-to-metal crown (베릴륨 불포함 치과 주조용 니켈-크롬 합금 중 금속의치상용 합금과 금속소부도재관용 합금의 부식에 관한연구)

  • Kim, Hong-Sik;Song, Jae-Sang;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • Purpose: This study examined the corrosion level by alloy type and pH, and used the corrosion levels as the dental health data. The study utilized one Ni-Cr alloy for the full and removable partial denture metal frameworks and two Ni-Cr alloys for porcelain-fused-to-metal crown, among the non-beryllium dental casting non-precious Ni-Cr alloys. Methods: The alloy specimens were manufactured in $10cm^2$ and stored in the corrosive solution(pH 2.2-4.4) in the electrical water bath($37^{\circ}C$) for seven days. Afterwards, the metal ions were quantitatively analyzed using the ICP. Results: Of the three metal alloys, Bellabond-Plus$^{(R)}$alloy and SOLIBOND N$^{(R)}$alloy, with 22% or higher chrome chemical contents, had higher corrosion resistance than Jdium-100$^{(R)}$alloy with 20% chrome chemical content. In all three alloys, the corrosion of Ni was highest, and metal ion corrosion was higher in the pH 2.2 corrosive solution. Conclusion: Although Ni-Cr alloy was not very corrosive, a Ni-allergic patient should not have Ni-Cr alloy prosthesis. The Ni-Cr alloy for porcelain-fused-to-metal crown should be designed for the dental porcelain to cover the whole crown.

Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime (저사이클 피로 영역에서의 Alloy 617 모재와 용접재의 파괴 시험편에 대한 거시적 및 미시적 관찰)

  • Kim, Seon Jin;Dewa, Rando Tungga;Kim, Woo Gon;Kim, Eung Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.565-571
    • /
    • 2016
  • This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately $45^{\circ}$ to the fatigue loading direction.

NANO-STRUCTURAL AND NANO-CHEMICAL ANALYSIS OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.491-500
    • /
    • 2012
  • The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.