• Title/Summary/Keyword: Base material

Search Result 1,936, Processing Time 0.035 seconds

An Experimental Study on the Turning Property of Welded Material (용접부의 선삭특성에 관한 실험적 연구)

  • Jang, Bok-Deuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.13-21
    • /
    • 1986
  • Turning property of metal is affected by the cutting condition, tool geome- try and cutting material. But the turning property of welded material is not welknown. Welded structures usually contain nonhomogeneity, defects and resi- dual stresses due to differential contraction between welded metal and base metal. In this paper, authors conducted the experimental test on the turning property, by changing turning condition and welding electrodes of the welded specimens. The results obtained in these experimental tests are as follows; (1) Within the limit of this experimental test, the cutting force of the weld zone is bigger than that of base metal, and this phenomena is caused by the different mechanical property of the weld zone. The range of the variation of cutting force in the weld zone is caused by the nonhomogeneity of the weld zone, respectively. (2) The surface roughness follows the general characteristic of the effect of cutting condition on the surface roughness and the surface roughness of the weld zone shows coarse surface comparing with that of the base metal. (3) The specimen welded by the electrode E4301, shows worse cutting property than that of E4361 and E4313.

  • PDF

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

A Study on the Fatigue Strength Improvement of Welded Parts of SS400 Using the Shot Peening and PWHT Technique for Subway Cars (쇼트피닝과 후열처리에 의한 전동차용 SS400 용접부 피로강도 개선연구)

  • Kim, Jin-Hern;Kim, Hyun-Gyu;Goo, Byeong-Choon;Cheong, Seong-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.65-70
    • /
    • 2007
  • Welding is the most commonly used method to produce bogie and carbody of Electrical Multiple Units(EMU), because it increases the strength and lowers the weight of EMU. Since bogies are constantly exposed to repeated reacting load during acceleration and deceleration, it is also true that crack normally occurs at welding parts. In this study, we have investigated the fatigue strength of SS400 on welded parts in order to find efficiency of treatment after welding by shot peening and Post-Weld heat treatment(PWHT) with butt welded specimens. The results of fatigue test indicate that the measurement of base material specimen is 236MPa, welded specimen is 132MPa and the specimen of PWHT is 107MPa approximately. We concluded that the measurement of welded specimen and PWHT is approximately 44 and 54 percents lower than the base material specimen, respectively. Another finding is that the peened specimen is approximately 23 and 61 percents higher than the base material specimen in terms of the fatigue in strength of specimens.

  • PDF

An Optimization of Cast poly-Si solar cell using a PC1O Simulator (PC1D를 이용한 cast poly-Si 태양전지의 최적화)

  • Lee, Su-Eun;Lee, In;Ryu, Chang-Wan;Yi, Ju-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.553-556
    • /
    • 1999
  • This paper presents a proper condition to achieve above 19 % conversion efficiency using PC1D simulator. Cast poly-Si wafers with resistivity of 1 $\Omega$-cm and thickness of 250 ${\mu}{\textrm}{m}$ were used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 ${\mu}{\textrm}{m}$, front surface recombination velocity 100 cnt/s, sheet resistivity of emitter layer 100 $\Omega$/$\square$, BSF thickness 5 ${\mu}{\textrm}{m}$, doping concentration 5$\times$10$^{19}$ cm$^3$ . Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %. Further details of simulation parameters and their effects to cell characteristics are discussed in this paper.

  • PDF

Evaluation of the Microstructures and Mechanical Properties on Friction Welded STK400 Tube (마찰접합 된 STK400 Tube의 미세조직과 기계적 특성 평가)

  • Kim, Gyeong-Woo;Song, Kuk-Hyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from $15.1{\mu}m$ in the base material to $4.5{\mu}m$ in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Acid-base Reaction (산-염기 반응)

  • Lee, Man-Seung
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.3-8
    • /
    • 2018
  • Acid-base reaction together with oxidation-reduction reaction is an important reaction occurring in the aqueous phase. The definition by Lewis on the acid and base is more comprehensive than several definitions. HSAB theory has been introduced to consider the difference in the reactivity among the acids/bases. In this paper, several acid-base reactions were analyzed by applying the definition of acid and base. Moreover, the background of the introduction of HSAB and its application was explained.

A Study on Base Isolation Performance of Magneto-Sensitive Rubbers (자기민감 고무를 이용한 구조물의 면진성능 연구)

  • Hwang In-Ho;Lim Jong-Hyuk;Lee Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.437-444
    • /
    • 2006
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using Magneto-Sensitive(MS) rubbers is proposed and shown to effectively protect structures against earthquakes. The MS Rubber is a class of smart controllable materials whose mechanical properties change instantly by the application of a magnetic field To demonstrate the advantages of this approach, the MS Rubber isolation system is compared to Lead-Rubber Bearing(LRB) isolation systems and judged based on computed responses to several historical earthquakes. The MS Rubber isolation system is shown to achieve notable decreases in base drifts over comparable passive systems with no accompanying increase in base shears or in accelerations imparted to the superstructure.

  • PDF

A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여-)

  • 박재우;김용덕;황응림;김선진;강성군
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

Effect of Mixed Gases on Decomposition Characteristic of CF4 by Non-Thermal Plasma (비열플라즈마를 이용한 CF4 분해에 미치는 혼합가스의 영향)

  • 박재윤;정장근;김종석;임근희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.543-550
    • /
    • 2002
  • In this paper, the $CF_4$ decomposition rate and by-product were investigated for two simulated plasma reactors which are metal particle reactor and spiral wire reactors as a function of mixed gases. The $CF_4$ decomposition rate by plasma reactor with metal particle electrode had a gain of 20~25% over that by plasma reactor with spiral wire electrode. The $CF_4$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_4$ decomposition efficiency of metal particle reactor was about 80% at AC 24kV. The $CF_4$ decomposition rate used Ar-$N_2$ as base gas was the highest among three base gases of $N_2$, $Ar-N_2$, air. The by-products of the $N_2$, $N_2Ar$ base as were similar, but in case of air base they were different.