• 제목/요약/키워드: Base Shear Force

검색결과 160건 처리시간 0.035초

쉬어키를 가진 면진건축물의 동적해석 (Dynamic Analysis for Base Isolated Structure with Shear Keys)

  • 한덕전;김태호
    • 한국공간구조학회논문집
    • /
    • 제7권1호
    • /
    • pp.45-53
    • /
    • 2007
  • 지진 다발 지역인 일본에서 최근 초고층 건축물에 전단키를 갖는 면진 구조물에 많이 건설되고 있으며 초고층 건축물은 중저층 건축물과 비교하여 고유진동주수가 크기 때문에 지진하중이 작아 지진에 대한 피해가 적다. 지진에 의하여 큰 전단력이 발생할 경우에 전단키를 갖는 면진장치의 전단키는 파괴되고 면진장치가 지진에 거동하게 되며 만약에 퐁하중이 지진하중보다 크다면 전단키를 지진하중에 대하여 설계하는 것이 아니라 풍하중에 의하여 설계하여야 한다. 중진지역인 한국에서도 면진 건축물에 있어서 전단키의 필요성 요구되며 이에 대한 검증이 필요한 실정이다. 본 논문에서는 5층과 15층 면진 건축물에 대하여 전단키를 적용하고 지진해석을 실시하여 그 거동을 비교분석, 면진 건축물에 대한 전단키의 필요성을 알아보았다.

  • PDF

Role of membrane forces in seismic design of reinforced concrete liquid storage structures

  • Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.533-543
    • /
    • 2000
  • To prevent major cracking and failure during earthquakes, it is important to design reinforced concrete liquid storage structures, such as water and fuel storage tanks, properly for the hydrodynamic pressure loads caused by seismic excitations. There is a discussion in recent Codes that most of the base shear applied to liquid containment structures is resisted by inplane membrane shear rather than by transverse flexural shear. The purpose of this paper is to underline the importance of the membrane force system in carrying the base shear produced by hydrodynamic pressures in both rectangular and cylindrical tank structures. Only rigid tanks constrained at the base are considered. Analysis is performed for both tall and broad tanks to compare their behavior under seismic excitation. Efforts are made to quantify the percentage of base shear carried by membrane action and the consequent procedures that must be followed for safe design of liquid containing storage structures.

지진시 고층 건물 밑면전단력 산정을 위한 지반계수 결정에 대한 연구 (Evaluation of Soil Factors for Determination of Seismic Base Shear Force for High Story Buildings During Earthquake)

  • 윤종구;김동수;임종석;손덕길
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.85-97
    • /
    • 2003
  • 본 논문에서는 건축물 하중기준 및 해설에서 제시된 지반분류 방법으로 지반 III 또는 IV에 해당하는 지반을 대상으로 등가선형해석을 수행하였고, 해석에서 얻어진 스펙트럴 가속도 값으로 지반계수를 역산하여 국내 각 기준에서 제시하고 있는 지반계수와 비교 검토하였다. 해석결과 고유주기 0.9초 이상 고층 건물의 경우 지반 III의 경우 지반 II의 지반계수의 사용이 가능하였고, IV의 경우 지반 III의 지반계수를 사용하여도 충분하였다. 또한, 대부분의 해석에서 얻어진 지반계수의 값이 국내 내진설계기준의 값보다 상당히 작게 나타났다. 이는 내진설계시 국내 내진설계기준을 그대로 적용하면 구조물 밑면전단력이 보수적으로 산정될 수 있음을 의미한다.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

플랜트 설비 지지용 대안 강구조 시스템의 내진성능 (Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure)

  • 곽병훈;안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Debonding forces of three different customized bases of a lingual bracket system

  • Sung, Jang-Won;Kwon, Tae-Yub;Kyung, Hee-Moon
    • 대한치과교정학회지
    • /
    • 제43권5호
    • /
    • pp.235-241
    • /
    • 2013
  • Objective: The purpose of this study was to investigate whether extension of the custom base is necessary for enhancement of bond strength, by comparing the debonding forces and residual adhesives of 3 different lingual bracket systems. Methods: A total of 42 extracted upper premolars were randomly divided into 3 groups of 14 each for bonding with brackets having (1) a conventional limited resin custom base; (2) an extended gold alloy custom base: Incognito${TM}$; and (3) an extended resin custom base: KommonBase${TM}$. The bonding area was measured by scanning the bracket bases with a 3-dimensional digital scanner. The debonding force was measured with an Instron universal testing machine, which applied an occlusogingival shear force. Results: The mean debonding forces were 60.83 N (standard deviation [SD] 10.12), 69.29 N (SD 9.59), and 104.35 N (SD17.84) for the limited resin custom base, extended gold alloy custom base, and extended resin custom base, respectively. The debonding force observed with the extended resin custom base was significantly different from that observed with the other bases. In addition, the adhesive remnant index was significantly higher with the extended gold alloy custom base. Conclusions: All 3 custom-base lingual brackets can withstand occlusal and orthodontic forces. We conclude that effective bonding of lingual brackets can be obtained without extension of the custom base.

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.