• Title/Summary/Keyword: Base Frame

Search Result 583, Processing Time 0.024 seconds

ON RULED SURFACES GENERATED BY SANNIA FRAME BASED ON ALTERNATIVE FRAME

  • Suleyman Senyurt;Davut Canli;Kebire Hilal Ayvaci
    • Honam Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.12-37
    • /
    • 2024
  • The paper introduces a set of new ruled surfaces such that the base curve is taken to be the striction curve of N, C and W ruled surfaces from the alternative frame, and the generating line is taken to be one of the vectors of Sannia frame. The characterizations for each ruled surface such as fundamental forms, the Gaussian and mean curvature are also examined to provide the conditions for each surface to be developable or minimal.

Shake-table study of plaster effects on the behavior of masonry-infilled steel frames

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • The effects of plaster on the behavior of single-story single-bay masonry-infilled steel frames under in-plane base accelerations have been experimentally investigated by a shake-table. Tested structures were made in a 1/3 scale, with realistic material properties and construction methods. Steel frames with high and low flexural rigidity of beams and columns were considered. Each type of frame was tested with three variants of masonry: (i) non-plastered masonry; (ii) masonry infill with conventional plaster on both sides; and (iii) masonry infill with a polyvinyl chloride (PVC) net reinforced plaster on both sides. Masonry bricks were made of lightweight cellular concrete. Each frame was firstly successively exposed to horizontal base accelerations of an artificial accelerogram, and afterwards, to horizontal base accelerations of a real earthquake. Characteristic displacements, strains and cracks in the masonry were established for each applied excitation. It has been concluded that plaster strengthens the infill and prevents damages in it, which results in more favorable behavior and increased bearing capacity of plastered masonry-infilled frames compared to non-plastered masonry-infilled frames. The load-bearing contribution of the adopted PVC net in the plaster was not noticeable for the tested specimens, probably due to relative small cross section area of fibers in the net. Behavior of masonry-infilled steel frames significantly depends on frame stiffness. Strong frames have smaller displacements than weak frames, which reduces deformations and damages of an infill.

Seismic response analysis of reinforced concrete frames including soil flexibility

  • Jayalekshmi, B.R.;Poojary, V.G. Deepthi;Venkataramana, Katta;Shivashankar, R.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • The seismic response of RC space frame structures with isolated footing resting on a shallow soil stratum on rock is presented in this paper. Homogeneous soil stratum of different stiffness in the very soft to stiff range is considered. Soil, footing and super structure are considered to be the parts of an integral system. A finite element model of the integrated system is developed and subjected to scaled acceleration time histories recorded during two different real earthquakes. Dynamic analysis is performed using mode superposition method of transient analysis. A parametric study is conducted to investigate the effect of flexibility of soil in the dynamic behaviour of low-rise building frames. The time histories and Fourier spectra of roof displacement, base shear and structural response quantities of the space frame on compliant base are presented and compared with the fixed base condition. Results indicate that the incorporation of soil flexibility is required for the realistic estimate of structural seismic response especially for single storey structures resting on very soft soil.

Fatigue Characteristics and its Nondestructive Evaluation of Fire-resistance Steel for Construction with Low Yield Ratio and High Strength (저항복비·고강도 구조용 내화강의 피로특성 및 비파괴평가)

  • Kim, H.S.;Nam, K.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2001
  • The fatigue test was carried out to evaluate the fatigue characteristics of fire resistance steel for frame structure and heat affected zone (HAZ) by the one side Gas Metal Arc Welding (GMAW). In this paper, the fatigue crack growth behavior was investigated with the compact tension specimen of base metal and the HAZ according to chemical composition and rolling end temperature, respectively. And the acoustic emission signals obtained from the fatigue test were analyzed by the time-frequency analysis method as a nondestructive evaluation. Main results obtained are summarized as follows; The hardness was appeared softening phenomenon that weld metal and HAZ are lower than that of base metal. Fatigue life of welded specimen was longer than that of base metal. m was 3~4.5 in base metal and 3.8~5.8 in HAZ. The main frequency range of acoustic emission signal analyzed from time-frequency method is different with the range by noise and crack. Also, it could be classified that it was also generated by fracture mechanics of dimple, inclusion etc.

  • PDF

Earthquake response of reinforced concrete frame structures subjected to rebar corrosion

  • Yuksel, Isa;Coskan, Seda
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.321-341
    • /
    • 2013
  • This paper investigates earthquake response of reinforced concrete regular frames subjected to rebar corrosion. A typical four-story reinforced concrete frame is designed according to Turkish Earthquake Code in order to examine earthquake response. Then different levels of rebar corrosion scenarios are applied to this frame structure. The deteriorated conditions as a result of these scenarios are included loss in cross sectional area of rebar, loss of mechanical properties of rebar, loss in bond strength and variations in damage limits of concrete sections. The frame is evaluated using a nonlinear static analysis in its sound as well as deteriorated conditions. The rebar corrosion effect on the structural response is investigated by comparing the response of the frame in each scenario with respect to the sound condition of the frame. The results shows that the progressive deterioration of the frame over time cause serious reductions on the base shear and top displacement capacity and also structural ductility of the corroded frames. The propagation time, intensity, and extensity of rebar corrosion on the frame are important parameters governing the effect of rebar corrosion on earthquake response of the frame.

Study on response of a new double story isolated structure under earthquakes

  • Hang Shan;Dewen Liu;Zhiang Li;Fusong Peng;Tiange Zhao;Yiran Huo;Kai Liu;Min Lei
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.17-29
    • /
    • 2024
  • The traditional double story isolated structure is a derivative of the base isolated and inter-story isolated structures, while the new double story isolated structure represents a novel variation derived from the traditional double story isolated structure. In order to investigate the seismic response of the new double story isolated structure, a comprehensive structural model was developed. Concurrently, models for the basic fixed, base isolated, inter-story isolated, and traditional double story isolated structures were also established for comparative analysis. The nonlinear dynamic time-history response of the new double story isolated structure under rare earthquake excitations was analyzed. The findings of the study reveal that, in comparison to the basic fixed structure, the new double story isolated structure exhibits superior performance across all evaluated aspects. Furthermore, when compared to the base isolated and inter-story isolated structures, the new double story isolated structure demonstrates significant reductions in inter-story shear force, top acceleration, and inter-frame displacement. The horizontal displacement of the new double story isolated structure is primarily localized within the two isolation layers, effectively dissipating the majority of input seismic energy. In contrast to the traditional double story isolated structure, the new design minimizes displacements within the inter-isolation layer situated in the central part of the frame, as well as mitigates the overturning forces acting on the lower frame column. Consequently, this design ensures the structural integrity of the core tube, thereby preventing potential collapse and structural damage.

Study on the Effective Stiffness of Base Isolation System for Reducing Acceleration and Displacement Responses

  • Kim, Young-Sang
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.586-594
    • /
    • 1999
  • To limit both the large displacement and acceleration response of the structure efficiently, the relationships between acceleration and displacement responses of the structure under several earthquakes are investigated for various horizontal stiffness of the base isolation system to determine the effective stiffness of the base isolation system in this paper. An example structure is a five-storey steel frame building as the primary structure and the secondary structures are assumed to be located on the fifth floor of the primary structure. Input motions used in the structural analysis are El Centre 1940, Taft 1952, Mexico 1985, San Fernando 1971 Pacoima Dam, and artificially generated earthquakes. The relationships of the absolute peak acceleration and the displacement at the top of the structure are calculated for various natural periods of base isolators under various earthquakes. The peak acceleration response of the fifth floor in the base isolated structure is significantly reduced by a factor of 2.1 through 6.25. Also, the relative displacement response of the floor to the base of the superstructure is very small. The results of this study can be utilized to determine the effective stiffness of the base isolation system.

  • PDF

Seismic response analysis of RC frame core-tube building with self-centering braces

  • Xu, Long-He;Xiao, Shui-Jing;Lu, Xiao
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This paper examines the seismic responses of a reinforced concrete (RC) frame core-tube building with pre-pressed spring self-centering energy dissipation (PS-SCED) braces. The PS-SCED brace system consists of friction devices for energy dissipation, pre-pressed combination disc springs for self-centering and tube members as guiding elements. A constitutive model of self-centering flag-shaped hysteresis for PS-SCED brace is developed to better simulate the seismic responses of the RC frame core-tube building with PS-SCED braces, which is also verified by the tests of two braces under low cyclic reversed loading. Results indicate that the self-centering and energy dissipation capabilities are well predicted by the proposed constitutive model of the PS-SCED brace. The structure with PS-SCED braces presents similar peak story drift ratio, smaller peak acceleration, smaller base shear force and much smaller residual deformations as compared to the RC frame core-tube building with bucking-restrained braces (BRBs).

Development of Multi-Function Image Splitter (다기능 영상분할기 개발에 관한 연구)

  • Cho, Duk-Sang;Rho, Kwang-Hyun;Han, Min-Hong;Lee, Jae-Il
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.174-179
    • /
    • 1999
  • This paper describes the development of low cost, miniaturized multi-function image splitter for an unmanned guard system. The essential equipments of an image splitter system consist of a video system which displays in one screen images inputted by several cameras, a frame switcher which records each image sequentially in VTR, and TBC(Time Base Control) system which prevents image flickering during image switching. Currently, the price of similar system on the market is high, system management and repair are difficult, and bulky space is required. Futhermore, since currently available frame switcher can record only 30frame/sec, if eight cameras are installed, each camera image is recorded at the low speed of 3.75frame/sec, and consequently skip some images which may be vital for legal evidence. In this research, we have solved the problem of low speed recording by recording the video screen of splitted images at 30frame/sec and zooming each image when play back.

  • PDF

Performance Analysis of Single-frame Mode and Multi-Frame Mode in IEEE802.16j MMR System (IEEE802.16j MMR 시스템에서 Single-Frame 방식과 Multi-Frame 방식의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Yoo, Chang-Jin;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6B
    • /
    • pp.403-410
    • /
    • 2008
  • In this paper, we investigate the performance of MMR system in Non-transparent mode. The IEEE 802.16j MMR system has two node of operation, Single-frame (in band) and Multi-frame (out band) mode. In the analysis, we assume that channel interference between MR-BS and RS, or between RSs anywhere in the given area is ignored. The performance is presented in terms of the delay and the frame efficiency by varying number of RS and BS coverage to RS coverage ratio and the maximum coverage area of a BS by varying traffic density. Analytical results show that the Single-frame is more efficient than Multi-frame in frame efficiency and coverage extension.