• Title/Summary/Keyword: Base Assembly

Search Result 174, Processing Time 0.024 seconds

Design Guidance of Jig/Fixture for Flexible Manufacturing System (유연조립 시스템에서의 Jig/Fixture 설계에 관한 연구)

  • Shin, Chul-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a design guidance of jig/fixture for flexible manufacturing system based on the verification of a base assembly motion instability. In flexible assembly system, the base assembly needs to be maintained in its assembled state without being taken apart. This requires stability in motion while the base assembly is handled or tilted. Therefore, the instability of the base assembly motion should be considered when determining the guide line of designing jig/fixture by evaluating a degree of the motion instability of the base assembly. To derive the instability, first we inference collision free assembly directions by extracting separable directions for the mating parts and calculate the separability which gives informations as to how the parts can be easily separated. Using these results, we determine the instability evaluated by summing all the modified separabilities of each component part within base assembly.

Choice of Turning Devices for Robotic Assembly based on Separability and Instability (조립부품의 분리도 및 불안정도를 이용한 Turning device의 선정)

  • Shin, Chul Kyun;Cho, Hyung Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • This paper presents a choosing method of turning devices for stable robotic assembly based on verification of a base assembly motion instability. In flexible assembly application, the base assembly needs to be maintained in its assembled state without being taken apart. Therefore, the instability of the base assembly motion should be considered when determining the guide line of choosing turning devices by evaluating a degree of the motion instability of the base assembly. To derive the instability, first we inference collision free assembly directions by extracting separable directions for the mating parts and calculate the separability which gives informations as to how the parts can be essily separated. Using these results, we determine the instability evaluated by summing all the modified separabilites of each component part within base assembly.

  • PDF

Evaluation of Pavement Responses under Wide Base Tire and Dual Tire Assembly (타이어 종류 (Wide Base Tire and Dual Tire Assembly)에 따른 아스팔트 포장 반응 평가)

  • Cho, Seong-Hwan;Im, Jeong Hyuk;Al-Qadi, Imad L.
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.61-71
    • /
    • 2014
  • PURPOSES : The first generation of wide base tires introduced in the early 1980s was found to cause a significant increase in pavement damage compared to dual-tire assemblies. However, wide base tires have evolved considerably, and a new generation of wide base tire is thought to be comparable to conventional dual tires for pavement damage. A challenge associated with using wide base tires is the accurate quantification of pavement damage induced by these tires. The objective of this study was to investigate the responses of flexible pavement to continuously moving vehicular loading under various tire configurations. METHODS : The comparison of the strain/stress responses of full-depth pavement caused by conventional dual tire assembly and new generation of wide-base tires was performed. The FE model incorporates linear viscoelasticity of asphalt material and continuous moving load using implicit dynamic analysis. RESULTS AND CONCLUSIONS : The result demonstrates that the new wide-base tires caused slightly more fatigue damage and less primary rutting damage in HMA layer than a dual-tire assembly, but caused more secondary rutting damage in subgrade than a dual tire assembly.

Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding (마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발)

  • Chung, Ho-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

Position Estimation of the Welding Panels for Sub-assembly line in Shipbuilding by Vision System (시각 장치를 사용한 조선 소조립 라인에서의 용접부재 위치 인식)

  • 노영준;고국원;조형석;윤재웅;전자롬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.719-723
    • /
    • 1997
  • The welding automation in ship manufacturing process,especially in the sub-assembly line is considered to be a difficult job because the welding part is too huge, various, unstructured for a welding robot to weld fully automatically. The weld orocess at the sub-assembly line for ship manufacturing is to joint the various stiffener on the base panel. In order to realize automatic robot weld in sub-assembly line, robot have to equip with the sensing system to recognize the position of the parts. In this research,we developed a vision system to detect the position of base panle for sub-assembly line is shipbuilding process. The vision system is composed of one CCD camera attached on the base of robot, 2-500W halogen lamps for active illumination. In the image processing algorithm,the base panel is represented by two set of lines located at its two corner through hough transform. However, the various noise line caused by highlight,scratches and stiffener,roller in conveyor, and so on is contained in the captured image, this nosie can be eliminated by region segmentation and threshold in hough transform domain. The matching process to recognize the position of weld panel is executed by finding patterns in the Hough transformed domain. The sets of experiments performed in the sub-assembly line show the effectiveness of the proposed algorithm.

  • PDF

조립부품의 분리도및 불안정도를 이용한 Turning device의 설계에관한 연구

  • 신철균;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.257-261
    • /
    • 1993
  • This paper presents a design method of turning device for robotic assembly based on the verification of a instability for a base assembly. To derive the instability, first we inference collision free assembly directions by extracting separable directions for the part, and calculate the separability which gives informations as to how the part can be dasily separated. Using the result, we determine the instability evaluated by summing the all separabilites of each component part in base assembly. The proposed method gives a design guidance of turning device by evaluating a degree of the motion istability for the base assembly in flexible manufacturing application. An example is given to illustrate the concepts and procedure of the proposed scheme.

A framework for modelling and operation management of robotic assembly cells via knowledge base (지식베이스를 이용한 로보틱 조립셀의 모델링과 운영관리를 위한 프레임 워크)

  • 김대원;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.374-379
    • /
    • 1988
  • We propose a framework for modelling and operation management of robotic assembly cells via knowledge base. In the framework, each component of the cell is considered as a state variable, the relations among the state variables are stored in state transition maps(STMs) and then transformed into the form of knowledge. The assembly job tree(AJT) which includes the precedence relations and the constraints for assembly tasks is also described. Finally, an algorithm is presented to manage the cell operation.

  • PDF

A Base-Calling Error Detection Program for Use in Microbial Genome Projects (미생물 유전체 프로젝트 수행을 위한 Base-Calling 오류 감지 프로그램 및 알고리즘 개발)

  • Lee, Dae-Sang;Park, Kie-Jung
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.317-320
    • /
    • 2007
  • In this paper, we have developed base-calling error detection program and algorithm which show the list of the genes or sequences that are suspected to contain base-calling errors. Those programs detect dubious bases in a few aspects in the process of microbial genome project. The first module detects base-calling error from the Phrap file by using contig assembly information. The second module analyzes frame shift mutation if it is originated from real mutation or artifact. Finally, in the case that there is control microbial genome annotation information, the third module extracts and shows the candidate base-calling error list by comparative genome analysis method.

A COMPARATIVE STUDY ON THE DISLODGING FORCE OF MAGNETIC ATTACHMENT TO THE DENTURE RESIN BY MAGNETIC DESIGN AND FIXING MATERIALS

  • Lee, Jung-Hwa;Lee, Jong-Hyuk;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.261-268
    • /
    • 2008
  • STATEMENT OF PROBLEM: Detachment of the magnetic assembly from the denture base has been a problem in magnetic overdenture patients. PURPOSE: The objectives of this study were to compare the dislodging force by the fixing materials and the designs of the magnetic assembly, and to compare the effect between the fixing materials and the designs of the magnetic assembly. MATERIAL AND METHODS: Two fixing materials, Jet denture repair $acrylic^{(R)}$ and Super-$Bond^{(R)}$ C&$B^{(R)}$ and two types of magnetic assembly designed with or without wing were used. Each magnetic assembly was fixed in the chamber of the denture base resin block ($Lucitone^{(R)}$199) with each fixing material respectively. These specimens were thermocycled 2,000 cycles in the water held at $4^{\circ}C$ and $60^{\circ}C$ with a dwell time of 1 min each time. Each specimen was seated in a testing jig and then a push-out test was performed with a universal testing machine at a cross head speed of 0.5 mm/min to measure the maximum dislodging forces. RESULTS: Comparing the fixing materials, Super-Bond C&$B^{(R)}$ showed superior dislodging force than Jet denture repair $acrylic^{(R)}$. Comparing the design of the magnetic assemblies, the wing design magnetic assembly showed better dislodging force. Combination of the Super-Bond C&$B^{(R)}$ as a fixing material and wing design magnetic assembly revealed a greatest dislodging force. The kind of fixing material was more influential than the type of magnetic assembly. CONCLUSION: The dislodging force of Super-Bond C&$B^{(R)}$ was significantly higher than Jet denture repair $acrylic^{(R)}$. And the dislodging force of magnetic assembly which have wing design was significantly higher than magnetic assembly which have no wing design.

Finite Element Analysis and Geometric Parameter Optimization for BMT Driving Assembly (BMT 구동장치의 유한요소해석 및 형상변수 최적화)

  • Park, Young-Whan;Kwak, Jae-Seob;Jiating, Yan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.178-183
    • /
    • 2010
  • Base-mounted type(BMT) driving assembly in CNC machine tools is an indispensable part to improve productivity by reducing tool changeover time and to meet the ever-increasing demand of precision machine tools. This study aimed to perform finite element analysis and geometric parameter optimization to improve the efficiency of BMT driving assembly. First, simulations for three-dimensional structural and vibration analysis were performed using ANSYS/Workbench on the initial geometric models of BMT driving assembly. After analyzing stress and deformation concentration zones, several new geometrical models were designed and evaluated by design of experiments and ANSYS/DesignXplorer. Through a series of analysis-evaluation-modification cycles, it was seen that designed models were effective in determining optimal geometry of BMT driving assembly.