• Title/Summary/Keyword: Bascule bridge

Search Result 5, Processing Time 0.017 seconds

Conceptual design of light bascule bridge

  • Xu, Weiwei;Ding, Hanshan;Lu, Zhitao
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.381-390
    • /
    • 2008
  • This paper proposed a conceptual design of bascule bridge, which is a new kind of movable bridge with an aim of reducing the weight of superstructure. Compared with the traditional bascule bridge, the light bascule bridge chooses cable-stayed bridge with inclined pylon as its superstructure; therefore, the functions of balance-weight and structure will fuse into one. Otherwise, it adopts moving counterweight to adjust its center of gravity (CG) to open or close the bridge. In order to lighten the superstructure, it uses contact springs to auxiliary retract, and intelligent prestressing system (IPS) to control the main girder's deformation. Simultaneously the vibration control scheme of structure is discussed. Starting from establishing the mechanical model of bridge, this article tries to analyze the conditions that the design parameters of structure and attachments should satisfy to. After the design procedure was presented, an example was also adopted to explain the primary design process of this kind bridge.

Analysis of Bascule Bridge Behavior Based on Measurement Data (실측자료에 근거한 도개교량의 거동 분석)

  • Kong, Byung-Seung;Noh, Dong-Oh;Kyung, Kab-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.18-25
    • /
    • 2016
  • Bascule bridge, with its use to help vessels ply, has a several examples overseas of being serviced for more than decades years by careful maintenance, admitted its significance as landmarks for its rareness. Yeongdo Bridge, the sole bascule bridge in Korea was reconstructed in 2013 after being demolished because of its corrosion and aging, and now operates once in a day. Recently, safety inspections are executed thanks to demands getting higher for maintenance and safety of bridges, but measurement and analysis about bascule bridges are scarce. This study includes the analysis of the bascule bridge's behavior such as stress, vibration and reaction in normal condition and while it lifts up, based on measurement. We expect that this study will be used as an initial data to compare and confirm bridge's changes as service year and the number of operation increase.

The Strength Properties of Concrete used in Yeongdo Bridge (영도대교 콘크리트의 강도 특성)

  • Lee, Il-Sung;Ahn, Jae-Cheol;Kang, Byeung-Hee;Kim, Ki-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.23-25
    • /
    • 2011
  • The purpose of this study is to suggest documentation with determination of concrete then property, according to demolition and restoration the Youngdo bridge which has valuable meaning to modern technique as an only bascule bridge in Korea.

  • PDF

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

A Study on the construction of physical security system by using security design (보안디자인을 활용한 시설보안시스템 구축 방안)

  • Choi, Sun-Tae
    • Korean Security Journal
    • /
    • no.27
    • /
    • pp.129-159
    • /
    • 2011
  • Physical security has always been an extremely important facet within the security arena. A comprehensive security plan consists of three components of physical security, personal security and information security. These elements are interrelated and may exist in varying degrees defending on the type of enterprise or facility being protected. The physical security component of a comprehensive security program is usually composed of policies and procedures, personal, barriers, equipment and records. Human beings kept restless struggle to preserve their and tribal lives. However, humans in prehistoric ages did not learn how to build strong house and how to fortify their residence, so they relied on their protection to the nature and use caves as protection and refuge in cold days. Through the history of man, human has been establishing various protection methods to protect himself and his tribe's life and assets. Physical security methods are set in the base of these security methods. Those caves that primitive men resided was rounded with rock wall except entrance, so safety was guaranteed especially by protection for tribes in all directions. The Great Wall of China that is considered as the longest building in the history was built over one hundred years from about B.C. 400 to prevent the invasion of northern tribes, but this wall enhanced its protection function to small invasions only, and Mongolian army captured the most part of China across this wall by about 1200 A.D. European lords in the Middle Ages built a moat by digging around of castle or reinforced around of the castle by making bascule bridge, and provided these protections to the resident and received agricultural products cultivated. Edwin Holmes of USA in 20 centuries started to provide innovative electric alarm service to the development of the security industry in USA. This is the first of today's electrical security system, and with developments, the security system that combined various electrical security system to the relevant facilities takes charging most parts of today's security market. Like above, humankind established various protection methods to keep life in the beginning and its development continues. Today, modern people installed CCTV to the most facilities all over the country to cope with various social pathological phenomenon and to protect life and assets, so daily life of people are protected and observed. Most of these physical security systems are installed to guarantee our safety but we pay all expenses for these also. Therefore, establishing effective physical security system is very important and urgent problem. On this study, it is suggested methods of establishing effective physical security system by using system integration on the principle of security design about effective security system's effective establishing method of physical security system that is increasing rapidly by needs of modern society.

  • PDF