• Title/Summary/Keyword: Basalts

Search Result 77, Processing Time 0.028 seconds

Structural, Paleomagnetic and Petrological Studies of the Chugaryeong Rift Valley (추가령(標哥嶺) 지구대(地構帶)의 지질구조(地質構造), 고지자기(古地磁氣) 및 암석학적(岩石學的) 연구(硏究))

  • Kim, Kyu Han;Kim, Ok Joon;Min, Kyung Duck;Lee, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.215-230
    • /
    • 1984
  • Petrological, paleomagnetic, geomorphological and structural studies on the southern part of, so called, Chugaryeong rift valley, have been carried out in order to clarify the nature of the rift valley. Three stages of volcanic activities characterized by Jijangbong acidic volcanic rocks and tholeiitic and andesitic basalt of Cretaceous age(?), and Jongok Quaternary olivine basalt occurred along the Dongducheon fault line. Jijangbong acidic volcanic rocks distributed in the central part of the studied area consist of rhyodacite, acidic tuff and tuff breccia, which are bounded by Dongsong fault on the east and Daegwangri fault on the west. The Jongok basalt differs from those of Ulrung and Jeju islands in mineralogy, chemical composition and differentiation. Jongok basalt distributed along the Hantan river dilineates the vesicles curved toward downstream direction and increment of numbers and thickness of lava flow toward upstream direction. These facts suggest that lava flowed from upstream side of the river. Rectangular drainage patterns also support the presence of the Dongducheon, Pocheon, Wangsukcheon and Kyonggang faults which were previously known. LANDSAT image, however, does not show any lineaments which could be counted as a graben or rift valley. Displacement of Precambrian quartzite and Jurassic Daedong supergroup along the southwestern extension of the Dongducheon fault shows the right lateral movement. The Paleomagnetic study of the tholeiitic and andesitic basalts from Baegeuri, Jangtanri and Tonghyeonri located at 2. 3km east, 0km east, and 1.5km west of Dongducheon fault respectively shows that their VGP(Virtual Geomagnetic Pole) being to intermediate geomagnetic field of short duration which suggests that they formed in almost same period. Mean VGP of Jongok basalt is located 82.4N and 80.6E. This is in good coincidence with worldwide VGP of Plio-Pleistocene indicating that Jongok basalt was extruded during Plio-Pleistocene epoch, and suggesting that the studied area has been tectonically stable since then. From the present study, the tectonic episode of the region is concluded as following three stages. 1. The 1st period is worked by the Daebo orogeny of Jurassic during which granodiorite was intruded in Precambrian basement. 2. The 2nd period is the time when right lateral strike-slip fault of NNE-SSW direction was formed probably during late Cretaceous to Paleogene and the Jijangbong acidic volcanic rocks and the older basalts were extruded. 3. The 3rd period is the time when the fault was rejuvenated during Pliocene or Pleistocene accompanied by the eruption of Jongok basalt. As a conclusion, geologic structure of the studied area is rather fault line valley than graben or rift valley, which is formed by differential erosion along the Dongducheon fault suggesting a continuation of the Sikhote-Alin fault. The volcanic rocks including the Jijangbong acidic rocks, tholeiitic-andesitic basalt and olivine basalt are associated with this fault line.

  • PDF

Petrotectonic Setting and Petrogenesis of Cretaceous Igneous Rocks in the Cheolwon Basin, Korea (철원분지 백악기 화성암류의 암석조구조적 위치와 암석성인)

  • Hwang, Sang-Koo;Kim, Se-Hyeon;Hwang, Jae-Ha;Kee, Won-Seo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.67-87
    • /
    • 2010
  • This article deal with petrotectonic setting and petrogenesis from petrography and chemical analyses of the Cretaceous volcanic and intrusive rocks in the Cheolwon basin. The volcanic rocks are composed of basalts in Gungpyeong Formation, Geumhaksan Andesite, and rhyolitic rocks (Dongmakgol Tuff, Rhyolite and Jijangbong Tuff), and intrusive rocks, Bojangsan Andesite, granite porphyry and dikes. According to petrochemistry, these rocks represent medium-K to high-K basalt, andesite and rhyolite series that belong to calc-alkaline series, and generally show linear compositional variations of major and trace elements with increase in $SiO_2$ contents, on many Harker diagrams. The incompatible and rare earth elements are characterized by high enrichments than MORB, and gradually high LREE/HREE fractionation and sharp Eu negative anomaly with late strata, on spider diagram and REE pattern. Some trace elements exhibit a continental arc of various volcanic arcs or orogenic suites among destructive plate margins on tectonic discriminant diagrams. These petrochemical data suggest that the basalts may have originated from basaltic calc-alkaline magma of continental arc that produced from a partial melt of upper mantle by supplying some aqueous fluids from a oceanic crust slab under the subduction environment. The andesites and rhyolites may have been evolved from the basaltic magma with fractional crystallization with contamination of some crustal materials. Each volcanic rock may have been respectively erupted from the chamber that differentiated magmas rose sequentially into shallower levels equivalenced at their densities.

Petrological Study on Basaltic Rocks of the Daljeon-ri Columnar Joint and the Noeseongsan Noerok Site in Pohang, Korea (포항 달전리 주상절리와 뇌성산 뇌록산지의 현무암 비교 분석)

  • Kim, Jae hwan;Yu, Yeong-wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Moon, Dong Hyeok;Kong, Dal-Yong
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • The basaltic rocks of Daljeon-ri columnar joint (Natural Monuments # 415) and Noeseongsan Noerok site (Natural Monuments # 547) were analysed in order to understand basalt types of two areas. The basaltic rocks of the Pohang Daljeon-ri columnar joint show a typical porphyritic texture containing phenocrysts (olivine and clinopyroxene) and groundmasses composed of clinopyroxene, plagioclase, and opaque minerals,. In contrast, basaltic rocks of Noeseongsan Noerok are characterized by fine-grained groundmass with large phenocrysts of plagioclase. Other analysis such as magnetic susceptibility, X-ray diffraction and X-ray fluorescence also support the petrological differences of two basalt rocks. The Daljeon-ri basaltic rocks are plotted on phonotephrite volcanic rocks of alkaline series in TAS(total alkali silica), and on within plate basalt in Zr-Ti diagram. The Noeseongsan basalts, on the other hand, are plotted on basaltic andesite to andesite of sub-alkaline series in TAS, and on volcanic arc basalt in Zr-Ti diagram. These results indicate that the original mantle materials between two basalt rocks were different each other, which probably originated from the change of a tectonic setting in the southeastern Korean peninsula during the Miocene.

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF

Modulus of elasticity of concretes produced with basaltic aggregate

  • Maia, Lino;Aslani, Farhad
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2016
  • Basalt is a type of volcanic rocks, grey to black in colour, contains less than 20% quartz, 10% feldspathoid, and at least 65% of the feldspar of its volume. Basalt is considered an igneous rock with fine grains due to the rapid cooling of lava. Basaltic rocks have been widely used as aggregate for various purposes. The study presented in this paper was carried out on basalts that are widespread in the Madeira Island of Portugal and that comprise the major source of local crushed rock aggregates. This paper discusses an experimental programme that was carried out to study the effects of basaltic aggregate on the compressive strength and modulus of elasticity of concrete. For this purpose, cylinder specimens with $150{\times}300mm$ dimensions and prism specimens with $150{\times}150{\times}375mm$ dimensions were cast. The experimental programme was carried out with several concrete compositions belonging to strength classes C20/25, C25/30, C30/37, C40/50 and C60/75. The Eurocode 2 indicates the modulus of elasticity should be 20% higher when the aggregates are of basaltic origin, however results showed significant differences and a correction is proposed.

균열암반 대수층에서의 방사성 핵종원소 거동예측을 위한 이론적/실험적 고찰

  • 이승구;이길용;조수영;김용제;윤윤열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.406-409
    • /
    • 2004
  • 최근 Lee et al.$^{l-2)}$ 은 화강암질 편마암내 균열면의 방해석이 Eu의 변화에 큰 영향을 주며, 아울러 Eu 은 Am의 유사체로서 매우 적합한 원소라고 제안하였다. 이 논문에서는 1)희토류원소와 액티나이드 원소의 이온반경, 배위수 등의 상호비교와 2) 응집력(cohesive energy)의 유사성과 물리적/화학적 특성 그리고 3) 희토류원소 지구화학의 최근 연구결과를 토대로 하여, 고준위 방사성 핵종원소인 Am의 지질매체내 거동을 예측하기 위한 유사체(analog)로서 Eu이 매우 유용한 역할을 해준다는 가설2)을 검증한 결과를 보고하고자 한다. 연구방법으로서, 핵종원소의 지질매체별 흡착특성을 밝혀내기 위해 금번 실험에서는 희토류원소 암상별 분포의 특성을 고려하여 4종류(화강암질 편마암류 2종, meta-basalts, 응회암)의 시료를 선별하였다. 방사화학적 흡탈착 실험의 핵종동위원소로서는 152Eu와 241Am을 선택하였다. 이는 본 연구팀의 연구결과, Eu과 Am의 밀접한 물리적/화학적 상관관계 그리고 지질환경내에서의 거동특성을 고려한 것이다. 실험결과 양 동위원소의 지질매체와의 흡착 반응 특성을 비교해 볼 때, 시간의 경과에 따라 서로간에 매우 유사한 양상의 증감을 보여주면서 변화함을 알 수가 있었다. 이 결과는 희토류원소가 액티나이드 원소의 지질환경내 거동예측을 위한 유사체로서 매우 훌륭한 도구라는 것을 입증해 주는 것이라 할 수 있다.

  • PDF

Palaeomagnetism of Tertiary Basins in Southern Korea: 1. Changgi Basin (남한 제3기 분지지역에 대한 고자기 연구: 1. 장기지역)

  • Kim, In-Soo;Kang, Hee-Cheol
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.357-367
    • /
    • 1996
  • A total of 113 samples (basalts, tuffs, and siltstones from coal-bearing sediments) was collected from 14 sites of the Tertiary Changgi basin in southeastern Korea, and studied palaeomagnetically. Site-mean declination of the ChRM from 5 sites was found to be deflected clockwise about $30^{\circ}$. Other 5 sites showed no vertical-axis deflection of ChRM direction. In consideration of previous palaeomagnetic data from other Tertiary basins in the vicinity, it is interpreted that the deflection of ChRM directions has been caused by NNW-SSE simple shear associated with the opening of the East Sea, and the time of rotation should be about 16 Ma. Other 2 sites showed counterclockwise deflection of site-mean ChRM. These sites might be located among lager tectonic blocks which were rotating clockwise. AMS (anisotropy of magnetic susceptibility) study revealed $NE{\rightarrow}SW$ directed magnetic lineation at two tuffaceous sites. This might indicate flow direction of tuffs during the time of deposition. Most of the other sites showed load-foliation lying subparallel to the bedding plane. This must have been caused by gravitational loading acted vertically to the strata.

  • PDF

Characterization of Hydroxy-interlayered Mineral in Non-Andic Soils from Jeju Island

  • Lee, Gyoo-Ho;Yungoo Song;Ha, Dae-Ho;Moon, Hi-Soo;Moon, Ji-Won
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.45-47
    • /
    • 2001
  • Jeju island is composed mainly of volcanic rocks such as basalts, trachytic andesites, tracytes, and sedimentary rocks. About 80% of Jeju soils are classified as Andisols. The amount of annual precipitation in Jeju island is about 1872mm, which is 1.5 times the annual precipitation of south Korea. There is a significant difference In amount of precipitation with regions even within Jeju island. In study area, the annual amount of rainfall is about 1280mm, the lowest in Jeju island while south part of the island has the annual precipitation of 2056mm, though they are only tens of kilometers apart. The parent materials of soils in study area are pyroclastic rocks and tuffs. The soils of non-andic properties have developed in this area since pedogenic process of pyroclastic materials is strongly influenced by climatic factor, especially precipitation. In order to investigate the mineralogical characteristics of soils, X-ray analysis for <0.2 and 2-0.2$\mu\textrm{m}$ size fractions was performed with ethylene glycol solvation, K-, Mg-saturation, heat treatment(110, 330, 550$^{\circ}C$). Acid-oxalate and DCB(sodium hydrosulfite, sodium citrate, sodium bicarbonate) dissolution method was used to assess tile total amounts or Al, si, and hydroxy interlayer or 2:1 layer silicates. XRD was also applied for samples treated with DCB only and DCB-oxalate sequentially. XRD patterns showed that 2:1 and 1:1 layer silicates were found, which are different from soils of Andisols. Vermiculite, chlorite, hydroxy interlayered minreals, and interstratified minerals(vermiculite/chlorite) were observed in 2-0.2$\mu\textrm{m}$ size fractions. After DCB treatments, ethylene glycolated samples with Mg-saturation showed expanded d-spacing, suggesting the possibility of hydroxy interlayered minerals. The amounts of hydroxy interlayered minerals increased in surface soil. Unlike Andisols, short range ordered minerals such as allophane, imogolite and gibbsite were hardly found. Mica and kaolinte existed in small amounts. Results are summarized in Fig 1 and Fig. 2.

  • PDF

A geothermal gradient of the upper mantle beneath Jeju-do, Korea: evidence from mantle xenoliths

  • Choi, Seong-Hee;Jwa, Yong-Joo;Lee, Han-Yeang
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.19-19
    • /
    • 2000
  • ;Ultramafic xenoliths found in alkali basalts from Jeju-do, Korea are mostly spinel Iherzolites composed of olivine, orthopyroxene, clinopyroxene and spinel. A subordinate amount of spinel harzburgites and pyroxenites are also found. Temperatures for these xenoliths were estimated from the compositions of coexisting pyroxenes (Wood '||'&'||' Banno 1973; Wells 1977; Bertrand '||'&'||' Mercier 1985; Brey '||'&'||' Kohler 1990), the AI-solubility in orthopyroxene coexisting with olivine and spinel (Sachtleben '||'&'||' Seck 1981; Webb '||'&'||' Wood 1986), and from Fe/Mg partitioning between olivine and spinel (Ballhaus et al. 1991). Temperature estimates from the thermometers by Wells (1977) and Brey and Kohler (1990) are compatible. Average equilibrium temperatures by these two methods for spinel peridotites range from 890 to 1030$^{\circ}$C. Pressures for spinel peridotites were estimated from the geobarometer by Kohler and Brey (1991) derived from the equilibrium Ca content of olivine coexisting with clinopyroxene, and fall within the range of 12.9 to 26.3 kbar. The combination of the thermometer by Brey and Kohler (1990) and the geobarometer by Kohler and Brey (1991) yields P- T estimates for Jeju-do spinel peridotites that fall in experimentally determined spinel lherzolite field in CFMASCr system (O'Neill 1981). These P-T data sets have been used to construct the Quaternary Jeju-do geotherm, which is significantly different from the conventional conductive geotherm. The xenolith-derived geotherm has a higher T gradient at low P (13 kbar) than at high P, which may be due to perturbation of the conductive heat flow by magma underplating or overplating at the crust-mantle boundary. Temperature estimates and statistics on the xenoliths indicate that the crust/mantle boundary in Jeju-do lies at about 11 kbar (~39 km). Spinellherzolite is inferred as a main constituent rock of the uppermost lithospheric mantle beneath Jeju-do. Pyroxenites were intercalated in peridotites in similar depth and temperature as re-equilibrated veins or lens.

  • PDF

The Preliminary Study for Genetic Environment of the Gem fields in the Pailling Area, Cambodia (캄보디아 빠일링지역의 보석광상의 성인에 대한 예비연구)

  • 김인준
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.269-274
    • /
    • 2003
  • This study, one of the projects for investigation of the precious metal deposits of the Circum-Pacific Ocean coon-tries, was performed in a gem field of Pailling, Cambodia, in which there are numbers of undeveloped mineral resources. The gem fields in the Pailling area are typically distributed in the laterite, lying on of weathered basalts. The gem grade of corundum is low in the surface soil horizon(less than 1 m in depth), but is higher in the subsurface. Occurrence and genetic environment of the precious stone are not concerned in the soils. A Precious stone that is already made from at the least upper part of volcanic rocks is produced in large quantities to undergoing to weathering of the rocks. A precious stone is made from upper part of the formation under the high temperature when volcano is vomiting or after vomiting. and/or made from between the formation under the high temperature when other volcano is vomiting. Volcanic rocks including precious stone are a little different from other volcanic rocks when volcano is vomiting, but chemical composition of rocks is not far different from other volcanic rocks.