• Title/Summary/Keyword: Barrier protection

Search Result 213, Processing Time 0.025 seconds

Physical protection system vulnerability assessment of a small nuclear research reactor due to TNT-shaped charge impact on its reinforced concrete wall

  • Moo, Jee Hoon;Chirayath, Sunil S.;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2135-2146
    • /
    • 2022
  • A nuclear energy facility is one of the most critical facilities to be safely protected during and after operation because the physical destruction of its barriers by an external attack could release radioactivity into the environment and can cause harmful effects. The barrier walls of nuclear energy facilities should be sufficiently robust to protect essential facilities from external attack or sabotage. Physical protection system (PPS) vulnerability assessment of a typical small nuclear research reactor was carried out by simulating an external attack with a tri-nitro toluene (TNT) shaped charge and results are presented. The reinforced concrete (RC) barrier wall of the research reactor located at a distance of 50 m from a TNT-shaped charge was the target of external attack. For the purpose of the impact assessment of the RC barrier wall, a finite element method (FEM) is utilized to simulate the destruction condition. The study results showed that a hole-size of diameter 342 mm at the front side and 364 mm at the back side was created on the RC barrier wall as a result of a 143.35 kg TNT-shaped charge. This aperture would be large enough to let at least one person can pass through at a time. For the purpose of the PPS vulnerability assessment, an Estimate of Adversary Sequence Interruption (EASI) model was used, which enabled the determination of most vulnerable path to the target with a probability of interruption equal to 0.43. The study showed that the RC barrier wall is vulnerable to a TNT-shaped charge impact, which could in turn reduce the effectiveness of the PPS.

A Study of Corrosion Resistance and Torque in Bolt Coated with Magni 565 (Magni 565 코팅 볼트의 내식성 및 토오크 특성에 대한 연구)

  • Kim, Sang-Soo;Kim, Moo-Gil;Jung, Byong-Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.195-202
    • /
    • 2007
  • Corrosion resistance and torque of M10 bolt coated with Magni 565 were investigated. Corrosion protection mechanism were also studied with the microstructure of coating film. The bolts with the optimum conditions showed around $10{\mu}m$ layer thickness, a great corrosion resistance in salt spray test and a proper torque in torque/tension test. But torque coefficient k increased with the number of bolting and clamping force of M10 bolt showed significantly lower than that of specified value 28.3kN. It was thought that the repeated bolting made the coating film peel off and powdery. The sample coated with optimum coating conditions showed more higher polarization resistance and corrosion potential than the specimens of top and base coat only. The base coating film was composed of lamellar zinc flakes, which provides a large sacrificial cathodic protection. Meanwhile, the top coating film was composed of organic aluminium pigments layer, which provides barrier protection to the corrosion circumstances.

A Study on the Textile for Protective Clothing of Fire Fighters (한국 소방대원 방수피복의 소재특성에 관한 비교 연구)

  • 정정숙;이연순
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.5
    • /
    • pp.15-24
    • /
    • 2002
  • The following research conclusions were made, relative to the experiments of the textiles of fire fighters Protective Clothing. 1. When the body protection efficiency such as the thickness, the strength and heat resistance are considered, Nomex(N) is tuned out the best outer shelf, Gore-tex(KG) the best moisture barrier, and Wool-felt(WC) the best thermal barrier. 2. In the hygienic and sanitary efficiency also, N is turned out the best outer shelf, KG the best moisture barrier, and WC the best thermal barrier in its degree of water resistance, water vapour permeability, and air permeability. 3. In the washing and maintenance efficiency, too. N is turned out the best outer shell, KG the best moisture barrier, and WC the best thermal barrier, being considered the material's rate of contraction, the changing rate of frame resistance, water resistance, and water vapour permeability. 4. When considered the frame resistance against the reflection tape and reflection efficiency, O is the best material for it marks the highest score in the frame resistance and reflective effect.

Effect of Metal Barrier Layer for Flexible Solar Cell Devices on Tainless Steel Substrates

  • Kim, Kyoung-Bo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.16-19
    • /
    • 2017
  • A thin metal layer of molybdenum is placed between the conventional barrier layer and the stainless steel substrate for investigating the diffusion property of iron (Fe) atoms. In this study, the protection probability was confirmed by measuring the concentration of out-diffused Fe using a SIMS depth profile. The Fe concentration of chromium (Cr) barrier layer with 10 nm molybdenum (Mo) layer is 5 times lower than that of Cr barrier without the thin Mo layer. The insertion of a thin Mo metal layer between the barrier layer and the stainless steel substrate effectively protects the out-diffusion of Fe atoms.

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

Consideration on the Performance Evaluation Criteria & Test Data Analysis for the Roadside Safety Facilities (차량방호안전시설 성능평가기준 및 시험데이터 분석에 관한 고찰)

  • Lee, Changseok;Kim, Changhyun;Suk, Jusik;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2014
  • To verify the performance of roadside safety facilities, strength and occupant protection test are performed by evaluation criteria. Strength test use a truck and occupant protection test use a sedan. Strength perfomance is analyzed pass rate by post lateral resistance of the safety barrier. Occupant protection performance is analyzed from THIV(Theoretical Head Impact Velocity) and PHD(Post-impact Head Deceleration) by crash cushion test.

Performance Evaluation of Steel and Composite Safety Barrier for Bridge by Vehicle Crash Simulation (차량 충돌 시뮬레이션에 의한 강재 및 복합소재 교량용 방호울타리 성능 비교)

  • Kim, Seung-Eock;Cho, Pan-Kyu;Hong, Kab-Eui;Jeon, Shin-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • A composite safety barrier for bridge has been developed and the performance of the composite safety barrier for bridge has been compared with the steel safety barrier for bridge through computer simulation. As the structural strength performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that the deformation of the composite safety barrier for bridge is 17.0% of that of the steel safety barrier for bridge. As the passenger protection performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that THIV and PHD of the composite safety barrier for bridge are 47.1% and 49.0% respectively of those of the steel safety barrier for bridge. As the behavior of the vehicle after crash, the composite safety barrier for bridge is superior to the steel safety barrier for bridge showing the increased exit velocity and the reduced exit angle. Both of the steel and composite safety barrier for bridge are not scattered in the analysis.

Compatibility for Proposed R.94 PDB Test (PDB 시험에 대한 충돌 상호 안전성)

  • Jang, Eun-Ji;Kim, Joseph;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • Currently various safety tests are being performed in many countries with growing interest in vehicle safety. However the vehicles which have good safety performance in these tests could not secure the good performance in real car to car accident. So new test protocol using progressive deformable barrier (PDB) was proposed by EEVC in Europe, NHTSA in USA and some vehicle manufacturers, etc. The target of PDB test is to control partner protection in addition to self-protection on the same test. The proposal is to update current ECE R.94 frontal ODB test. So barrier, impact speed, overlap are changed to avoid bottoming-out in the test configuration. In this paper 3 different tests (R.94, EuroNCAP and PDB test) were carried out using current production vehicles with same structure. The results of these tests were compared to understand PDB test. As a result PDB test shows the highest vehicle deceleration and dummy injury because PDB offers a progressive increase in stiffness in depth and height. However vehicle intrusion was affected with rather test velocity than stiffness of deformable barrier. PDB deformation data is used for partner protection assessment using PDB software and it shows that the test vehicle is rather not aggressive.

Basic study for construction methods of salino water protection for Estuary barrier. (하구언의 담수침투방지공법에 관한 연구)

  • 최영박;임병조
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.55-69
    • /
    • 1976
  • The purpose of this paper is to provide basic data for construction methods of leakage pretaction for estuary barrien which is constructed to in take restoration water from irigative use and a river flow in its ultimate dsicharge to ward to sea, The water, accordingly, has reviewed the discrepancis between theories and experiments based on the hydraulic analysis of ground water through a series of sourveys on equi-patential line of seepage flow and a series of some experiments. apparently, however, the research results herein might reflect in some part not more than inference since those experiments are not conducted in a real foundation but from an indoor experiment or calculation, conclusion in brief are itemized here-under. 1. small-scale barrier require cut-off wall, which should reach the complete impereable layer, 2. Duplication barrier is provided effective in protection saline water seepage. 3. a barrier with broad crest might enable protection of massive seepage by fresh water lens formed from precipitation.

  • PDF

Evaluation of Pressure Effects on Blast Valves for Facility Protection of Underground Computing Center (지하 전산센터의 시설보호를 위한 방폭밸브에 미치는 폭압 평가)

  • Pang, Seung-Ki;Shin, Jin-Won;Kim, Wae-deuk
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • This paper presents two-step simulations to calculate the influence of blast-induced pressures on explosion-protection valves installed at the boundary between a protection facility and a tunnel entering the facility. The first step is to calculate the respective overpressure on the entrance and exit of the tunnel when an explosion occurs near the tunnel entrance and exit to approach the protection facility. Secondly, the blast pressures on the explosion-protection valves mounted to walls located near the tunnel inside approaching the protection facility are analyzed with a 0.1 ms time variation using the results obtained from the first-step calculations. The following conclusions could be derived as a results: (1) The analysis of the entrance tunnel scenario, P1, leads to the maximum overpressure of 47 kPa, approximately a half of the ambient pressure, at the inner entrance due to the effect of blast barrier. For the scenario, P2, the case not blocked by the barrier, the maximum overpressure is 628 kPa, which is relatively high, namely, 5.2 times the ambient pressure. (2) It is observed that the pressure for the entrance tunnel is effectively mitigated because the initial blast pressures are partially offset from each other according to the geometry of the entrance and a portion of the pressures is discharged to the outside.