• 제목/요약/키워드: Barrier potential

검색결과 654건 처리시간 0.027초

Electrical Properties of TiO2 Thin Film and Junction Analysis of a Semiconductor Interface

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • 제16권4호
    • /
    • pp.248-251
    • /
    • 2018
  • To research the characteristics of $TiO_2$ as an insulator, $TiO_2$ films were prepared with various annealing temperatures. It was researched the currents of $TiO_2$ films with Schottky barriers in accordance with the contact's properties. The potential barrier depends on the Schottky barrier and the current decreases with increasing the potential barrier of $TiO_2$ thin film. The current of $TiO_2$ film annealed at $110^{\circ}C$ was the lowest and the carrier density was decreased and the resistivity was increased with increasing the hall mobility. The Schottky contact is an important factor to become semiconductor device, the potential barrier is proportional to the hall mobility, and the hall mobility increased with increasing the potential barrier and became more insulator properties. The reason of having the high mobility in the thin films in spite of the lowest carrier concentration is that the conduction mechanism in the thin films is due to the band-to-band tunneling phenomenon of electrons.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권4호
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Barrier-Transition Cooling in LED

  • Kim, Jedo
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.44-51
    • /
    • 2013
  • This paper proposes and analyzes recycling of optical phonons emitted by nonradiative decay, which is a major thermal management concern for high-power light emitting diodes (LED), by introducing an integrated, heterogeneous barrier cooling layer. The cooling is proportional to the number of phonons absorbed per electron overcoming the potential barrier, while the multi-phonon absorption rate is inversely proportional to this number. We address the theoretical treatment of photon-electron-phonon interaction/transport kinetics for optimal number of phonons (i.e., barrier height). We consider a GaN/InGaN LED with a metal/AlGaAs/GaAs/metal potential barrier and discuss the energy conversion rates. We find that significant amount of heat can be recycled by the barrier transition cooling layer.

Effect of Recombination and Decreasing Low Current on Barrier Potential of Zinc Tin Oxide Thin-Film Transistors According to Annealing Condition

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.161-165
    • /
    • 2019
  • In this study, zinc tin oxide (ZTO) thin-film transistors are researched to observe the correlation between the barrier potential and electrical properties. Although much research has been conducted on the electronic radiation from Schottky contacts in semiconductor devices, research on electronic radiation that occurs at voltages above the threshold voltage is lacking. Furthermore, the current phenomena occurring below the threshold voltage need to be studied. Bidirectional transistors exhibit current flows below the threshold voltage, and studying the characteristics of these currents can help understand the problems associated with leakage current. A factor that affects the stability of bidirectional transistors is the potential barrier to the Schottky contact. It has been confirmed that Schottky contacts increase the efficiency of the element in semiconductor devices, by cutting off the leakage current, and that the recombination at the PN junction is closely related to the Schottky contacts. The bidirectional characteristics of the transistors are controlled by the space-charge limiting currents generated by the barrier potentials of the SiOC insulated film. Space-charge limiting currents caused by the tunneling phenomenon or quantum effect are new conduction mechanisms in semiconductors, and are different from the leakage current.

전위 장벽에 대한 전자의 터널링 시간의 시뮬레이션 (Simulation of electron tunneling time through a potential barrier)

  • 이욱;이병호
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.159-163
    • /
    • 1996
  • Simulated electron tunneling time through a potential barrier is compared with theoretical phase time. For a GaAs/Al/sub 0.3/Ga/sub 0.7/As/GaAs potential barrier with 300 meV height and 3 nm or 5 nm width, simulations are performed with various average electron energies and momentum deviations. The simulation results become closer to the theoretical phase time as the average electron energy decreases and as the momentum deviation decreases. It is also shown that a barrier, which is due to the peak spectrum shift in the momentum space after tunneling. (author). refs., figs.

  • PDF

CuO띠가 입혀진 ZnO 소결체의 일산화탄소에 대한 선택적 감지 특성 (Selective Sensing of Carbon Monoxide Gas in CuO banded ZnO Ceramics)

  • 신병철
    • 한국세라믹학회지
    • /
    • 제30권10호
    • /
    • pp.819-822
    • /
    • 1993
  • The purpose of this paper is a investigation of sensing mechanism for the carbon monoxide gas in CuO infiltrated ZnO ceramics. Potential barriers between CuO and ZnO can explain the selective sensing of carbon monoxide gas in the physically contacted CuO/ZnO ceramics. A specimen having no potential barrier between CuO and ZnO was prepared to see whether the gas sensing mechanism is related to the potential barrier. CuO and ZnO was prepared to see whether the gas sensing mechanism is related to the potential barrier. CuO was painted on the non electrode sides of ZnO ceramics. The CuO painted ZnO ceramics showed that the sensitivityfor the carbon moxnoxide gas was 1.3 times as high as that for the hydrogen gas. It is almost same gas sensitivity as that of the CuO infiltrated ZnO ceramics.

  • PDF

채널도핑강도에 대한 이중게이트 MOSFET의 DIBL분석 (Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Concentration)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.579-584
    • /
    • 2012
  • 본 연구에서는 이중게이트(Double Gate; DG) MOSFET에서 발생하는 단채널효과 중 하나인 드레인유기장벽 감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하고자 한다. 드레인유도장벽감소 현상은 채널의 길이가 짧아질 때 드레인 전압이 소스측 전위장벽에 영향을 미쳐 장벽의 높이를 감소시키는 현상으로써 단채널에서 발생하는 매우 중요한 효과이다. 본 연구에서는 DIBL을 해석하기 위하여 이미 발표된 논문에서 타당성이 입증된 포아송 방정식의 해석학적 전위분포를 이용할 것이다. 이 모델은 특히 전하분포함수에 대하여 가우시안 함수를 사용함으로써 보다 실험값에 가깝게 해석하였으며 소자 파라미터인 채널두께, 산화막두께, 도핑농도 등에 대하여 드레인유도장벽감소의 변화를 관찰하고자 한다.

채널도핑강도에 대한 DGMOSFET의 DIBL분석 (Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Intensity)

  • 정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.888-891
    • /
    • 2011
  • 본 연구에서는 이중게이트(Double Gate; DG) MOSFET에서 발생하는 단채널효과 중 하나인 드레인유기장벽 감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하고자 한다. 드레인 유기장벽감소 현상은 채널의 길이가 짧아질 때 드레인 전압이 소스쪽 장벽에 영향을 미쳐 장벽의 높이를 감소시키는 현상으로써 단채널에서 발생하는 매우 중요한 효과이다. 본 연구에서는 DIBL을 해석하기 위하여 이미 발표된 논문에서 타당성이 입증된 포아송방정식의 해석학적 전위분포를 이용할 것이다. 이 모델은 특히 전하분포함수에 대하여 가우시안 함수를 사용함으로써 보다 실험값에 가깝게 해석하였으며 소자 파라미터인 채널두께, 산화막두께, 도핑강도 등에 대하여 드레인 유기장벽감소의 변화를 관찰하고자 한다.

  • PDF

콜로이드성 알루미나 분말 입자의 응집현상의 컴퓨터 시뮬레이션 (Computer simulation of agglomeration in colloidal alumina powder suspension)

  • 김종철;오근호
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.224-230
    • /
    • 1999
  • 콜로이드성 알루미나 분말 입자들의 현탁액에서 입자들의 응집현상을 시뮬레이션 하였다. 현탁액 속의 알루미나 분말 입자들은 입자간 포텐셜 에너지를 가지고 있으며 시간이 경과함에 따라 현탁액으 전체적인 에너지를 감소시키는 방향으로 시스템을 변화시킨다. 현탁액 속의 분말 입자들의 응집 현상을 입자간 포텐셜 곡선의 유형에 따라 관찰하였다. 단거리에서 강한 친화 포텐셜 에너지를 가지는 입자들은 무정형 망목 응집구조를 유도하며 응집체의 크기가 작아지고 단거리에서 강한 척력 포텐셜 에너지와 장거리에서 상대적으로 강한 친화 포텐셜 에너지를 가지는 분말 입자들이 밀집충진 응집구조에 접근하고 응집체의 크기가 상대적으로 커지게 된다. 입자간 에너지 분포에 강한 반발에너지 장벽이 존재하는 경우에 입자들이 응집함에 따라 이러한 에너지는 장벽이 사라지게 되며 이러한 현상은 입자의 응집패턴의 변화를 의미한다.

  • PDF

열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구 (Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature)

  • 오데레사
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.342-346
    • /
    • 2016
  • To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.