• Title/Summary/Keyword: Barrier integrity

Search Result 109, Processing Time 0.028 seconds

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials (NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 )

  • JinUk Yoo;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome

  • Yu-Rim Chae;Yu Ra Lee;Young-Soo Kim;Ho-Young Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.747-756
    • /
    • 2024
  • Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.

The Impact of Consumer Characteristics Upon Trust and Purchase Intentions in B2C E-marketplaces (오픈마켓에서 개인특성이 신뢰 및 구매의도에 미치는 영향에 관한 실증연구)

  • Cho, Hwi-Hyung;Hong, Il-Yoo
    • Information Systems Review
    • /
    • v.12 no.3
    • /
    • pp.49-73
    • /
    • 2010
  • The lack of customer satisfaction and trust remains a key barrier to electronic commerce. From the standpoint of online merchants, it is critical to build consumer trust by lessening sources of apprehensions and uneasiness associated with online transactions. This paper explores the relationships between customer satisfaction and intermediary's trustworthiness factors in B2C e-marketplaces. It also aims at examining the effects of consumer characteristics, including propensity to trust and Internet shopping self-efficacy, upon trust and purchase intentions. To meet the research objectives, an empirical study has been conducted by surveying 223 active e-marketplace buyers in Korea. The findings of the present research indicate that customer satisfaction positively affects all the three attributes of trustworthiness (i.e., competence, benevolence, and integrity), and more specifically it has a quite strong association with benevolence. In addition, propensity to trust has no significant influence on trust or purchasing intentions, and only affects benevolence and integrity with no direct effect on competence. Finally, Internet shopping self-efficacy was found to affect both trust and purchasing intentions, suggesting that e-marketplaces seek an online strategy designed to strengthen loyalty for customers with high self-efficacy, while they use a strategy to improve the usability and usefulness of their website to attract customers with low self-efficacy. The paper concludes with implications and directions for future research.

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

High Glucose and Advanced Glycosylation Endproducts(AGE) Modulate the P-cadherin Expression in Glomerular Epithelial Cells(GEpC) (배양한 사구체 상피세포에서 고농도 당과 후기 당화합물에 의한 P-cadherin의 변화)

  • Ha Tae-Sun;Koo Hyun-Hoe;Lee Hae-Soo;Yoon Ok-Ja
    • Childhood Kidney Diseases
    • /
    • v.9 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Purpose : Podocytes are critical in maintaining the filtration barrier of the glomerulus and are dependent on the integrity of slit diaphragm(SD) proteins including nephrin, p-cadherin, and others. Diabetic proteinuric condition demonstrates defects in SD molecules as well as ultrastructural changes in podocytes. We examined the molecular basis for this alteration of SD molecules especially on P-cadherin as a candidate regulating the modulation of pathogenic changes in the barrier to protein filtration. Methods : To investigate whether high glucose and AGE induce changes in SD, we cultured rat GEpC under normal(5 mM) or high glucose(30 mM) and AGE- or BSA-added conditions and measured the change of P-cadherin expression by Western blotting and RT-PCR. Results : We found that administration of high glucose decreased the P-cadherin production significantly in the presence or absence of AGE by Western blotting. In RT-PCR high glucose with or without AGE also significantly decreased the expression of P-cadherin mRNA compared to those of controls. Such changes were not seen in the osmotic control. Conclusion : We suggest that high glucose with or without AGE suppresses the Production of P-cadherin at the transcriptional level and that these changes nay explain the functional changes of SD in diabetic conditions. (J Korean Soc Pediatr Nephrol 2005;9:119-127)

  • PDF

Role of the periosteum on bone regeneration in rabbit calvarial defects (가토의 두개골 결손부에서 골재생에 끼치는 골막의 역할)

  • Jang, Hyun-Seon;Kim, Sang-Mok;Park, Joo-Cheol;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.939-948
    • /
    • 2005
  • The role of the periosteum on osteointegration of $Bio-Oss^{(R)}$(Geistlich, Wolhusen/Switzerland) was studied in rabbit calvarial defect. 12 New Zealand white male rabbits between 2.8 and 4 kg were included in this randomized, blinded, prospective study. Each rabbit was anesthetized with Ketamine HCl(5 mg/kg) and Xylazine HCl(1.5 ml/kg). An incision was made to the bony cranium and the periosteum was reflected. Using a 6-mm trephine bur(3i. USA), four 8-mm defects were created with copious irrigation. The defects were classified into barrier membrane($Tefgen^{(R)}$, Lifecore Biomedical. Inc, U.S.A.) only group as a control, $Bio-Oss^{(R)}$ with barrier membrane group, $Bio-Oss^{(R)}$ with periosteum covering group, and $Bio-Oss^{(R)}$ without periosteum covering group. There were 2 rabbits in each group. The wound was closed with resorbable suture materials. Rabbits were sacrificed using phentobarbital(100 mg/kg) intravenously at 1, 2, and 4 weeks after surgery. The samples were fixed in 4% paraformaldehyde, and decalcified in hydrochloric acid decalcifying solution(Fisher Scientific, Tustin, CA) at $4^{\circ}C$ for 2-4 weeks. It was embedded in paraffin and cut into 6 ${\mu}m$ thickness. The sections were stained with H & E and observed by optical microscope. The results were as follows; 1. The periosteum played an important role in osteointegration of $Bio-Oss^{(R)}$ in bone defects. 2. When the periosteum remained intact and $Bio-Oss^{(R)}$ was placed on the defect, $Bio-Oss^{(R)}$ with periosteum covering has been incorporated into the newly formed bone from 2-week postoperatively. 3. When the periosteum was removed at the surgical procedure, invasion of connective tissue took place among the granules, and new bone formation was delayed compared to periosteum covering group. Therefore, when the bone grafting was performed with periosteal incision procedure to achieve tension-free suture, the integrity of the overlying periosteum should be maintained to avoid fibrous tissue ingrowth.

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

The Combination of Bacillus natto JLCC513 and Ginseng Soluble Dietary Fiber Attenuates Ulcerative Colitis by Modulating the LPS/TLR4/NF-κB Pathway and Gut Microbiota

  • Mingyue Ma;Yueqiao Li;Yuguang He;Da Li;Honghong Niu;Mubai Sun;Xinyu Miao;Ying Su;Hua Zhang;Mei Hua;Jinghui Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1287-1298
    • /
    • 2024
  • Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BG-induced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF