• 제목/요약/키워드: Barrier film

검색결과 655건 처리시간 0.033초

새싹인삼의 필름포장과 가스조성이 품질특성에 미치는 영향 (Effects of Film Packaging and Gas Composition on the Distribution and Quality of Ginseng Sprouts)

  • 장은하;이지현;최지원;신일섭;홍윤표
    • 한국약용작물학회지
    • /
    • 제28권2호
    • /
    • pp.152-166
    • /
    • 2020
  • Background: Ginsenosides, which have various physiological activities, are known to be abundant in the leaves and roots of ginseng. Ginseng sprouts can be used as a fresh vegetable and roots, stems, and leaves of ginseng can be consumed. This study aimed to investigate the effect of carbon dioxide treatment and the modified atmosphere (MA) packaging method in suppressing quality deterioration during the distribution of ginseng sprouts. Methods and Results: Ginseng sprouts were packed using Styrofoam, barrier film + non gas treatment, barrier film + gas treatment, 15 ㎛ polyamide (PA) double film + non gas treatment, 15 ㎛ PA double film + gas treatment, 25 ㎛ PA film + non gas treatment, or 25 ㎛ PA film + gas treatment. Quality parameters including gas composition, relative humidity, chlorophyll SPAD (Soil Plant Analysis Development) value, firmness, and rate of quality loss in ginseng sprouts were monitored at the following temperatures: 20℃, and 10℃. Ginseng sprouts packaged with 25 ㎛ PA film showed loss in quality because of wilting owing to low relative humidity within the film. Chlorophyll and firmness did not differ between film and gas treatments. The time point at which the combined loss from softening and decay owing to fungal, and bacterial infection and wilt reached 20% was considered the limit of distribution. At 20℃, the packaging not included in the 20% distribution loss rate limit or up to 7 days was 15 ㎛ PA double film + gas treatment. At 10℃, the packaging not included in the 20% distribution loss rate limit for up to 18 days were barrier film + gas treatment and 15 ㎛ PA double film + gas treatment. Conclusions: The film packaging suitable for the distribution of ginseng sprouts was found to be the barrier film and PA film with low gas permeability and maintaining hygroscopicity at 95% relative humidity. To prevent the loss in quality of ginseng sprouts, gas treatment (8% of O2 and 18% of CO2) in the film was found to be more suitable than no gas treatment for inhibition of decay.

플라즈마 활성화 표면처리 공정과 나노클레이 분산 적층 코팅을 이용한 표면 기능성 코팅 박막 개발: 수분 및 산소 차단성이 우수한 투명 포장재 (Development of surface functional coating thin film utilizing combined processes of plasma activation surface treatment and nanoclay dispersion: In applications for transparent water vapor and oxygen barrier packaging films)

  • 김남일;김극태
    • 한국결정성장학회지
    • /
    • 제33권3호
    • /
    • pp.97-103
    • /
    • 2023
  • 수분 차단성이 우수한 투명 포장재용 배리어성 필름을 개발하기 위하여, 상온 진공하에서 플라즈마 활성화 표면처리 공정의 전처리 공정을 거친 후에, 나노클레이 분산 적층 코팅층을 형성한다. 접착력 향상을 위한 코팅 공정의 적절한 가교공정과 최적분산공정을 통한 커플링 첨가제를 최적화하는 데 중점을 두었다. 기능성 코팅 박막에 대하여 분석한 결과는 수분 투과도 10 g/m2/24 hrs(ASTM F-1249) 이하, 산소 투과도 30 cc/m2/24 hrs(ASTM D3985) 이하임을 보여주었다. 이는 종래의 무처리 필름의 10배 이상 수분 차단성이 우수한 투명 포장용 표면기능성 코팅박막에 해당됨을 보였다. 아울러, 투명가스 차단 필름의 두께는 0.1 mm 이내이며, 투명가스차단 복합층은 2개의 층으로 구성되었다. PET 박막 계면 특성연구에서, FT-IR의 실험분석에 의하면 R DS 1.125 %에서 반응 활성도가 최적화임을 나타내고 있다.

플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 ZrO2 가스 차단막의 특성 (Properties of ZrO2 Gas Barrier Film using Facing Target Sputtering System with Low Temperature Deposition Process for Flexible Displays)

  • 김지환;조도현;손선영;김화민;김종재
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.425-430
    • /
    • 2009
  • $ZrO_2$ film was deposited by facing target sputtering (FTS) system on polyethylene naphthalate (PEN) substrate as a gas barrier layer for flexible organic light emitting devices (FOLEDs), In order to control the heat of the FTS system caused by the ion bombardment in the cathode compared with the conventional sputtering system, the process characteristics of the FTS apparatus are investigated under various sputtering conditions such as the distance between two targets ($d_{TT}$), the distance between the target and the substrate ($d_{TS}$), and the deposition time. The $ZrO_2$ film by the FTS system can reduce the damage on the films because the ion bombardment with high-energy particles like gamma-electrons, Moreover, the $ZrO_2$ film with optimized condition ($d_{TT}$=140 mm) as a function of the distance from center to edge showed a very uniform thickness below 5 % for a deposition time of 3 hours, which can improve the interface property between the anode and the plastics substrate for flexible displays, It is concluded that the $ZrO_2$ film prepared by the FTS system can be applied as a gas barrier layer or an interlayer between the anode and the plastic substrate with good properties of an uniform thickness and a low deposition-temperature.

DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구 (Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films)

  • 박새봄;김치환;김태규
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

항온항습 환경에 노출된 Al2O3 ALD 박막의 특성 평가 (Characteristics Evaluation of Al2O3 ALD Thin Film Exposed to Constant Temperature and Humidity Environment)

  • 김현우;송태민;이형준;전용민;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.11-14
    • /
    • 2022
  • In this work, we evaluated the Al2O3 film, which was deposited by atomic layer deposition, degraded by exposure to harsh environments. The Al2O3 films deposited by atomic layer deposition have long been used as a gas diffusion barrier that satisfies barrier requirements for device reliability. To investigate the barrier and mechanical performance of the Al2O3 film with increasing temperature and relative humidity, the properties of the degraded Al2O3 film exposed to the harsh environment were evaluated using electrical calcium test and tensile test. As a result, the water vapor transmission rate of Al2O3 films stored in harsh environments has fallen to a level that is difficult to utilize as a barrier film. Through water vapor transmission rate measurements, it can be seen that the water vapor transmission rate changes can be significant, and the environment-induced degradation is fatal to the Al2O3 thin films. In addition, the surface roughness and porosity of the degraded Al2O3 are significantly increased as the environment becomes severer. the degradation of elongation is caused by the stress concentration at valleys of rough surface and pores generated by the harsh environment. Becaused the harsh envronment-induced degradation convert amorphous Al2O3 to crystalline structure, these encapsulation properties of the Al2O3 film was easily degraded.

실리콘 산화막을 이용한 초소형 비열플라즈마 발생장치의 방전 및 오존발생특성 (Discharge and Ozone Generation Characteristics of a Micro-Size Nonthermal Plasma Generator Using Silicon Oxide Film)

  • 강정훈;태흥식;문재덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1816-1818
    • /
    • 1996
  • A micro-size nonthermal plasma generator, using a $SiO_2$ film as a dielectric barrier, has been studied experimentally for a high frequency ac voltage in 2LPM oxygen gas fed. The $SiO_2$ film as a micro-size dielectric barrier was made by the wet oxidation of n-type Si wafer($220[{\mu}mt]$). It can be generated ozone, as a nonthermal plasma intensity parameter, at very low level of applied voltage about 1[kV] by using the micro-size dielectric barrier. As a result, in case that have no air gap spacing i.e. surface discharge case shows relatively higher ozone concentration rather than that case of the micro-airgap spacing.

  • PDF

Vertical Diffusion of Ammonia Into Amorphous Ice Sturcture

  • 김영순;문의성;강헌
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.280-280
    • /
    • 2012
  • We examined ammonia diffusion on the surface of amorphous ice film through the measurement of decreasing residual quantity of $NH_3$ molecules compared to $H_2O$. The populations of $NH_3$ molecules on the surface of amorphous ice were monitored by using the techniques of temperature programmed reactive ion scattering (TPRIS) method. The ratio of intensity between ammonia and water was examined as a function of time at controlled temperature. When ammonia molecules were externally added onto an ice film at a temperature of 80 K, ammonia coverage with regard to ice was 0.12-0.16 ML. The intensity of ammonia molecules on the surface of ice decreased as time increased and the extent of decreased intensity of ammonia increased as controlled temperature increased. Moreover, energy barrier was estimated to be $51kJmol^{-1}$ on amorphous ice film. The results of the experiment indicate that ammonia molecules have a property of vertical diffusion into amorphous ice and the energy barrier of ammonia diffusion into bulk of ice is higher than that of hydrogen bonding.

  • PDF

OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석 (Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments)

  • 이사야;송윤석;김현;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • 한동석;문대용;권태석;김웅선;황창묵;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

친환경 PLA/PPC/PLA 적층필름의 제조 및 특성 연구 (Fabrication and Characterization of Environmentally Friendly PLA/PPC/PLA Multilayer Film)

  • 이득영;김경연;조미숙;남재도;이영관
    • 폴리머
    • /
    • 제37권2호
    • /
    • pp.249-253
    • /
    • 2013
  • Poly(lactic acid)(PLA)와 이산화탄소를 원료로 합성한 비결정성 수지인 poly(propylene carbonate)(PPC)를 공압출하여 PLA/PPC/PLA 적층으로 제조하고 일축 연신한 후 수축성 필름을 제조하였다. 이 필름의 기계적, 광학적, 배리어 특성들과 열수축성을 연구하였다. PLA/PPC/PLA 필름은 $75^{\circ}C$에서 최대 수축률이 60% 이상이었다. PPC 함량이 증가할수록 필름의 수축률이 증가하고, 수축속도는 빠르며, 연신온도가 높을수록 필름의 수축률이 감소하는 경향을 보였다. 또한 제조한 필름은 높은 산소 및 수분 배리어성을 나타내었다. 본 연구에서 제조한 PLA/PPC/PLA 필름은 환경 친화적인 수축성 필름으로의 실용화가 가능할 것으로 기대된다.