• Title/Summary/Keyword: Barrier Potential

Search Result 645, Processing Time 0.034 seconds

Fabrication of edible gelatin-based films by heat pressing (열 압착을 이용한 가식성 젤라틴 필름 제조)

  • Kim, Eui Hyun;Song, Ah Young;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.179-184
    • /
    • 2022
  • In this study, edible films made of fish and mammalian gelatins were produced using heat pressing, and their physical properties were investigated. Transparent and smooth films were formed continuously and uniformly using a mixture of fish skin gelatin (FG) or mammalian gelatin (MG), glycerol, and water under the process of heat pressing at 90℃ and 20 MPa for 5 min. Heat-pressed FG films possessed lower light transmittance and tensile strength than heat-pressed MG films; however, their appearance, surface morphology, water vapor permeability, lightness, and redness were not different from those of heat-pressed MG films. Although heat-pressed FG films had lower tensile strength, they had a flatter and more uniform surfaces and demonstrated higher transparency and moisture barrier properties compared to the casted FG films. These results demonstrate the potential utility of heat pressing for the large-scale production of edible films using both FG and MG.

Anticancer Effect of Novel Peptide from Abalone (Haliotis discus hannai) based on Next Generation Sequencing Data (차세대염기서열분석 데이터 기반으로 선별한 전복(Haliotis discus hannai) 유래 신규 펩타이드의 항암 효과)

  • Moon, Hyunhye;Hwang-bo, Jeon;Veerappan, Karpagam;Natarajan, Sathishkumar;Chung, Hoyong;Park, Junhyung
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • Glioblastoma is one of the highly aggressive central nervous system tumors and it is difficult to treat owing its anatomical location. Peptides are novel class of drugs which has the potential to cross the blood brain barrier and exerts its anti-tumor activity. Here, we discovered a novel peptide from abalone (Haliotis discus hannai) next generation sequencing (NGS) data and tested its anticancer effect on glioblastoma cell line SNU-489. The anticancer activity was measured using a cytotoxicity assay in a time and dose-dependent manner. A concentration and time dependent increase in the cytotoxicity was seen in cells treated with the novel peptide. The highest cytotoxicity rate of about 67% was observed in SNU-489 cells treated with 200 µM peptide for 48 hrs. However, the cytotoxic effect was not or less observed in a normal skin cell line HaCaT at similar concentration, thus, evident of peptide's cell specific anticancer activity. In addition, the gene expression level of necroptosis-related genes was analyzed by qRT-PCR to elucidate the anticancer mechanism of the novel peptide. RIPK3 expression was significantly increased by 9.6-fold in 200 µM of novel peptide treatment group, and MLKL expression level was significantly elevated by 2-fold in 100 µM treated group compared to the control group. Therefore, this study confirmed that the novel abalone-derived peptide has anticancer potency, and it causes cancer cell death through the necroptosis mechanism. Collectively, these results suggest that the novel peptide could be candidate anticancer agent for the treatment of glioblastoma in the future.

The Rationalization of PDM in Pusan Port for the Period of Round Pacific Area (환태평양 시대의 부산항 물류산업 합리화)

  • Park, S. Y.;Park, C. S.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.93-110
    • /
    • 1992
  • The most change in this century is supposed to be declination of ideology, and block of world economy. Addition to down full of cold war atmosphere around Northeast Asia, not only economic and social mood in this region is dramatically changed, but also it gave birth to the block of Northeast economy that accerlated new hub of world economy. According to dramatic change of economic surroundings the dynamic potential of growth in this region will be guided to enlarge inter-regional trade and increase volume of trade, thus suggests to grow steadily transportation. cargos in this region will have to arrange the system of delivery and inner transportation, accessary facilities, inter-regional harbors if North America and EC has connected easily. As have accerlated GATT and UR represented multilateralism and regionalism, it has regulated to increase trades of region due to relief of the trade barrier through specific areas has agreed with separately. The flow of regionalism of world economy has appeared to realize EC and NAFTA centered U.S.A, and also has presented to free trade region or one-size market agreement in Asia as APEC, EAEG in Malaysia, and etc. In defense to this block and internationalism of world economy, Pusan has to come forward to the hub of Northeast others has proposed a project to dominate the Northeast, Economy Association Agreement as Far East comprehensive development project in USSR, Hunchun development project in NK, and East Sea development project in PRC, Niigate regional development in Japan, Duman River development project in NK, and East Sea development project in Korea. As this exercise has proceed, Pusan also have arranged development strategy definitely and prepared provisions systematically. Engaging to participate center of delivery system is meant to be completed complex functions, namely the transfer storage processing & assembly function of international commodity. Pusan has ability to be terminal point of TSR. it had been connected to EC as the biggest economy block and TKR as complex transportation root to Far East, it would be the center of inground and seabase delivery terminal to Rotterdom as the biggest container pier and major piers to North-East and South East Asia. In order to provide a Role of 21 century's internationalization, Pusan has appealed to participate in management information research and development connected to Pohang-Ulsan-Changwon-Masan, and has utilized efficiently the resources such as man, material, money and information.

  • PDF

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Effects of quercetin and coated sodium butyrate dietary supplementation in diquat-challenged pullets

  • Zhou, Ning;Tian, Yong;Liu, Wenchao;Tu, Bingjiang;Gu, Tiantian;Xu, Wenwu;Zou, Kang;Lu, Lizhi
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1434-1443
    • /
    • 2022
  • Objective: This study was designed to investigate the hypothesis that dietary quercetin (QUE) and coated sodium butyrate (SB) supplementation alleviate oxidative stress in the small intestine of diquat (DIQ)-challenged pullets. Methods: A total of 200 13-week-old pullets were divided into four groups: the control group (CON), the DIQ group, the QUE group, and the coated SB group, and injected intraperitoneally with either saline (CON) or diquat (DIQ, QUE, and SB) to induce oxidative stress on day 0. Results: On the first day, the malondialdehyde and superoxide dismutase (SOD) concentrations in the SB group were significantly different from those in the DIQ and QUE groups (p<0.05), and dietary supplementation with SB increased serum glutathione peroxidase (GSH-PX) levels compared with the DIQ group (p<0.05). Quercetin and SB increased the levels of CLAUDIN-1 and zonula occludens-1 (ZO-1) in the jejunum. On the tenth day of treatment, QUE attenuated the decrease in GSH-PX levels compared to those of the CON group (p<0.05), while SB increased SOD, GSH-PX, and total antioxidant capacity levels compared to those of the DIQ group. Nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) mRNA levels in the QUE and SB groups increased (p<0.05) and CLAUDIN-1 mRNA levels in the QUE and SB groups were upregulated compared to those in the DIQ group ileum tissue. Conclusion: Supplementation of QUE and SB demonstrated the ability to relieve oxidative stress in pullets post DIQ-injection with a time-dependent manner and QUE and SB may be potential antioxidant additives for relieving oxidative stress and protecting the intestinal barrier of pullets.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice

  • Youngheon Park;Jimin Jang;Jooyeon Lee;Hyosin Baek;Jaehyun Park;Sang-Ryul Cha;Se Bi Lee;Sunghun Na;Jae-Woo Kwon;Seok-Ho Hong;Se-Ran Yang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.191-201
    • /
    • 2023
  • Background and Objectives: O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung. Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice. Methods and Results: cP1P treatment significantly stimulated MSC migration and invasion ability. In cytokine array, secretion of vascular-related factors was increased in cP1P primed hdMSCs (hdMSCcP1P), and cP1P treatment induced inhibition of Lats while increased phosphorylation of Yap. We next determined whether hdMSCcP1P reduce inflammatory response in LPS exposed mice. hdMSCcP1P further decreased infiltration of macrophage and neutrophil, and release of TNF-α, IL-1β, and IL-6 were reduced rather than naïve hdMSC treatment. In addition, phosphorylation of STAT1 and expression of iNOS were significantly decreased in the lungs of MSCcP1P treated mice. Conclusions: Taken together, these data suggest that cP1P treatment enhances hdMSC migration in regulation of Hippo signaling and MSCcP1P provide a therapeutic potential for ALI/ARDS treatment.

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

The effects of a combination of calcium sulfate and platelet-derived growth factor on periodontal ligament cells in vitro (Calcium sulfate와 혈소판 유래성장인자의 혼합사용이 치주인대세포에 미치는 영향)

  • Kim, Jun-Seong;Choi, Seong-Ho;Yu, Yun-Jung;Chai, Jung-Kiu;Kim, Chong-Kwan;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.785-804
    • /
    • 1997
  • It was well known that calcium sulfate was biocompatible, resorbed rapidly in the body, had potential as a good barrier membrane. Platelet-derived growth factor(PDGF) was one of polypeptide growth factor that had been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purpose of this study was to evaluate the effects of a combination of calcium sulfate and PDGF on periodontal ligament cells in vitro to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the premolar tooth extracted for the orthodontic treatment. Cells were cultured in ${\alpha}-MEM$ contained with 20% FBS, at the $37^{\circ}C$, 100% of humidity, 5% $Co_2$ incubator. Cells were inoculated and cultured into 96 well culture plate with $1{\times}10^4cells/well$ of ${\alpha}-MEM$ for 1 day. After discarding the medium, those cells were cultured in ${\alpha}-MEM$ contained with 10% FBS alone(control group), in calcium sulfate(calcium sulfate group), in calcium sulfate treated with 15ng/ml of PDGF-BB(calcium sulfate+PDGF group), in ${\alpha}-MEM$ contained with 10% FBS treated with 15ng/ml of PDGF-BB(PDGF group) for 1, 2, 3 day respectively. And then each group was characterized by examining of the cell counting, MTT assay, collagen synthesis. The results were as follows. 1. In the analysis of cell proliferation by cell counting, both calcium sulfate group and calcium sulfate plus PDGF group showed no stastically significant difference compared to control group, but there was stastically significant difference between PDGF group and calcium sulfate group at 1, 2 day(P<0.05). 2. In the analysis of cell proliferation by MTT assay in calcium sulfate extracts, both calcium sulfate group and calcium sulfate plus PDGF group showed no stastically significant difference compared to control group, but there was stastically significant difference between PDGF group and calcium sulfate group at 2, 3 day, and between calcium sulfate plus PDGF group and calcium sulfate group at 2 day(P

  • PDF

In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88

  • Wan, Zhilin;Wang, Li;Chen, Zhuang;Ma, Xianyong;Yang, Xuefen;Zhang, Jian;Jiang, Zongyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1018-1025
    • /
    • 2016
  • Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.