• Title/Summary/Keyword: Barrel temperature

Search Result 129, Processing Time 0.029 seconds

Characteristics of Supersonic Nozzle and Jet Impingement (초음속 노즐과 벽면 충돌제트의 유동특성)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF

Effects of mushroom composition on the quality characteristics of extruded meat analog (버섯 첨가가 압출성형 대체육의 품질 특성에 미치는 영향)

  • Cho, Sun Young;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.357-362
    • /
    • 2020
  • This study was conducted to investigate the effects of mushroom composition (0, 4, 8, and 12%) on the quality characteristics of an extruded meat analog. The meat analog blend was isolated soy protein, wheat gluten, and corn starch (50:40:10). The extrusion condition was set to 55% feed moisture, 170℃ barrel temperature, and 150 screw speed by high moisture extrusion using a twin-screw extruder equipped with a cooling die. The integrity index, hardness, cohesiveness, springiness, chewiness, and cutting strength of the meat analog increased with the increasing mushroom content, while its water holding capacity and nitrogen solubility index (NSI) decreased. The protein digestibility decreased with the increasing mushroom content, while the DPPH radical scavenging activity significantly increased. In conclusion, the incorporation of mushrooms into the investigated meat analog enhanced its texture and antioxidant level.

Extrusion Effect on the Reduction of Fumonisin $B_1$ in Corn Grits with/or without Sugars (당류 첨가 및 비첨가 옥수수에서의 Fumonisin $B_1$ 감소에 미치는 Extrusion 효과)

  • ;Lloyd B. Bullerman
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.6
    • /
    • pp.547-552
    • /
    • 2000
  • Corn grits spiked with fumonisin B$_1$(FB$_1$) at a level of 5 $\mu$g/g were extrusion cooked in a co-rotating twin screw extruder at different temperatures(140, 160, 18$0^{\circ}C$) and screw speed(80, 100, 120 rpm). About 41~45% of the spiked FB$_1$ was lost when the corn grits were extruded. Both the barrel temperature and the screw speed. however, did not significantly affect the FBI reduction in extruded corn grits. More reduction of FB$_1$ was found in the presence of glucose than with fructose or sucrose when the corn grits were extruded with sugar at 14$0^{\circ}C$, 120 rpm. About 51, 34 and 19% of spiked FB$_1$ were remained in extruded corn grits with glucose at levels of 2.5%, 5%, and 7.5%, respectively.

  • PDF

The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment (억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung-Kon;An, Gi-Hong;Suh, Sae-Jung;Park, Don-Hee
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.

Effect of Mixing Ratio of White and Germinated Brown Rice on the Physicochemical Properties of Extruded Rice Flours (백미와 발아현미의 혼합비율이 압출성형 멥쌀가루의 이화학적 특성에 미치는 효과)

  • Kim, Ji Myoung;Yu, Mengying;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.813-820
    • /
    • 2012
  • To develop the high quality gluten-free rice products with health functionality and desirable texture with moistness, the physicochemical properties of extruded rice flours prepared from the mixture of germinated brown and white rices were investigated. The domestic organic Samgwangbyeo was used to make white and germinated brown rices. White rice (WR) was dried after soaked for 6 h at $15{\pm}3^{\circ}C$ and mixed with germinated brown rice (GBR) with different mixing ratios (100:0, 75:25, 50:50, 25:75, 0:100). The operating conditions of twin screw extruder were 250 rpm of screw speed, $120^{\circ}C$ of barrel temperature, and 25% moisture content of rice flour. The ash, crude protein and crude lipid contents were significantly different (p<0.05) and those of extruded GBR were the highest values, but those of extruded WR were the lowest. The color difference of extruded WR based on white plate showed the lowest among them. The water binding capacity (334.16%), swelling power (8.83 g/g), solubility (33.13%), and total starch (79.50%) were the lowest in extruded GBR. The viscosities of all extruded rice flours by RVA were maintained during heating. The peak and total setback viscosities of extruded rice flours ranged 127-352 and 58.0-85.5 cP, respectively. The novel food biomaterial from germinated brown rice as well as white rice was developed by twin screw extruder. The extruded rice flours control the moistness to improve the texture and also have functional materials, dietary fiber, GABA, and ferulic acid, etc to increase quality of gluten free rice products.

Papers : Analysis of Supersonic Rocket Plume Flowfield with Finite - Rate Chemical Reactions (논문 : 유한속도 화학반응을 고려한 초음속 로켓의 플룸 유동장 해석)

  • Choe,Hwan-Seok;Mun,Yun-Wan;Choe,Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.114-123
    • /
    • 2002
  • A supersonic rocket plum flowfield of kerosene/liquid-oxygen based propulsion system has been analysed using the Reynolds-averaged Navier-Stokes equations coupled with a 9-species 14-reaction finite-chemistry model. The result were compared with chemically frozen flow solution to investigate the effect of finite-rate chemistry on the plume flowfield. The computations were performed using a commercial CFD software, FLUENT 5. The finite-rate chemistry solution exhibited higher temperature caused by the reactions within the nozzle. All the chemical reactions within the plum were dominated only in the shear layer and behind the barrel shock reflection region where the temperatures are high and the effect of finite-rate chemical reactions on the flowfield was found to be insignificant. However, the present plume computation including the finite-rate chemical reaction within the plume has revealed major reactions occurring in the plum and their reaction mechanisms.

Starch Liquefaction and Residence Time Distribution in Twin-Screw Extrusion of ${\alpha}$-Starch (호화전분의 쌍축형 압출성형에서 전분액화 및 체류시간 분포)

  • Kim, Sung-Uk;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.369-373
    • /
    • 2009
  • ${\alpha}$-Waxy corn starch was used as a feed for twin-screw extrusion in order to enhance starch liquefaction with added thermostable ${\alpha}$-amylase (derived from Bacillus licheniformis). The residence time distribution and starch liquefaction were investigated. The starch liquefaction was analyzed in terms of reducing sugar contents, molecular size from gel permeation chromatography (GPC), and microstructure from scanning electron microscopy (SEM). The use of ${\alpha}$-starch contributed to the production of more reducing sugar than the use of raw starch use alone. From GPC, the effect of ${\alpha}$- starch on the molecular size reduction was shown to be small. From SEM, irregular and damaged surface were observed on the extrudate from ${\alpha}$-starch, as compared to those from raw starch. The spread of residence time distribution curves was greater with feed of ${\alpha}$-starch than raw starch, indicating that ${\alpha}$-starch was hard to flow forward during extrusion. This could be improved by increasing the feed moisture content and barrel temperature of extruder.

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Optimization of extrusion cooking conditions for seasoning base production from sea mustard (Undaria pinnatifida)

  • Lee, Chaehyeon;Shin, Eui-Cheol;Ahn, Soo-Young;Kim, Seonghui;Kwak, Dongyun;Kwon, Sangoh;Choi, Yunjin;Choi, Gibeom;Jeong, Hyangyeon;Kim, Jin-Soo;Lee, Jung Suck;Cho, Suengmok
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.175-186
    • /
    • 2022
  • Sea mustard (Undaria pinnatifida), an important edible seaweed belonging to the brown algal family of Alariaceae, contains copious physiologically active substances. It has long been popular in Korea as a food and is frequently consumed in the form of soup. It is also commercially available as a home meal replacement. In this study, we developed a seasoning key base with a high degree of sensory preference from sea mustard using the extrusion cooking process. Extrusion cooking conditions were optimized through response surface methodology. Barrel temperature (X1, 140℃-160℃) and screw speed (X2, 158-315 rpm) were set as independent variables, and overall preference was determined as the dependent variable (Y, points). An optimal condition was obtained at X1 = 148.5℃ and X2 = 315 rpm, and the dependent variable (Y, overall acceptance) was 7.95 points, similar to the experimental value of 7.81. Umami taste had a relationship with the overall acceptance of sea mustard seasoning. In the electronic nose and tongue, increased sourness and umami intensities were associated with the highest sensory score. The samples were separated well by each characteristic via principal component analysis. Collectively, our study provides imperative preliminary data for the development of various seasonings using sea mustard.

Research to Minimize Endoscope and Objective-lens Sensitivity Using Multi-configurations (다중 구성을 이용한 내시경 및 대물렌즈 광학계 공차 민감도 최소화 설계 기술)

  • Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.259-265
    • /
    • 2021
  • Recently, lens manufacturing and assembly technology has greatly improved. However, tight requirements of manufacturing and assembly lead to an increase in cost and manufacturing time, and in some cases the performance of an optical system may deteriorate depending on the operating environment's conditions, such as temperature or vibration. In addition, the use of a compensator is an effective method to reduce sensitivity in an ultra-precision optical system, but in the case of a small lens, such as that in an endoscope, it is difficult to use a compensator due to the size limitation of the lens barrel. Therefore, minimizing lens sensitivity is the most important technology in lens design. For this reason, there have been various attempts to reduce the lens sensitivity, and there is a trend to add functions to reduce the sensitivity in the lens design S/W. In this paper, we introduce a design technology that minimizes lens sensitivity. We first design a lens with quite good performance, then analyze the sensitivity of this lens, make a multi-configuration with high-sensitivity element error, and then reoptimize it. We prove with an example that this design technique is very effective.