• Title/Summary/Keyword: Barrel temperature

Search Result 129, Processing Time 0.023 seconds

Analysis of the Estimation of the Deflection and Hit Probability of a Gun Barrel of Next Infantry Fighting Vehicle (차기 보병전투장갑차 포신 처짐량 예측 및 명중률 분석)

  • Yoo, Sam-Hyeon;Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho;Nam, Suk-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • A gun barrel of infantry fighting vehicle is supported like a type of cantilever. Temperature of a gun barrel is increased by heat transfer due to the combustion of propellant charge during the firing. Thus, the muzzle of a gun barrel is deflected in accordance with its temperature and the accuracy rate is decreased by deflection of the muzzle. In this study, deflection of a gun barrel is estimated by measuring its restoration rate because measuring the deflection rate is difficult due to the vibration of the gun barrel during the firing. In order to obtain the relations between deflection rate and restoration rate of the 40mm gun barrel of Next Infantry Fighting Vehicle(NIFV) under varying temperature, measurement of deflection rate and restoration rate is carried out using 5.56mm Remington rifle barrel. Effect of the estimated deflection rate of a gun barrel of NIFV on the hit probability is also analyzed.

Temperature Control of Injection Molding Machine using PI Controller with Input Restriction (PI 제어기의 입력제한을 이용한 사출 성형기 온도제어)

  • Jang, Yu-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.604-610
    • /
    • 2007
  • Injection molding is the most common method of shaping plastic resins for manufacturing a variety of parts. This injection molding is accomplished by injection molding machines (IMM) which consists of a hewer, a reciprocating screw, barrel assembly, and an injection nozzle. The plastic resin is fed to the machine through the hopper and it should be heated to the target melting temperature, which depends on material properties, as closely as possible with very small temperature overshoot in the barrel. Since the barrel, which has temperature dependent specific heat and thermal conductivity in the operating temperature range, is heated by the several electric heater bands, it is not an easy task to control the temperature of the barrel owing to the interference of neighboring heaters and its material properties. Though PID controller with auto-tuning capability is widely adopted in the nm, the auto-tuning process should be carried out whenever the operating temperature is changed significantly. Recently, though the predictive controller is developed and shows good performance, it has drawbacks: 1. Since the heat transfer modeling process is very complicated and should be carried out again when the barrel is changed, it is somewhat inappropriate in the field. 2. The controller performance is not validated in whole operating temperature range. In this paper, cascade type simple PI controller with input restriction is proposed to find the possibility of controlling the barrel temperature in the whole operating temperature range. It is shown by experiment that the proposed controller shows good performance. This result can be applied to design of PI controller with auto-tuning capability.

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

A Study on Contact Dynamic Characteristics of Screw and Barrels in Injection Molding Machine (사출기용 배럴의 거동 특성에 관한 수치적 연구)

  • Cho Seung hyun;Kim Chung Kyun;Lee Il Kwon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.341-347
    • /
    • 2003
  • Single flighted screw extrusion is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding The temperature and injection pressure in barrel play a very important role in quality of products. Because thermal distortion and displacement of barrel by temperature difference and injection pressure difference cause irregular resine melting and flow. In this paper thermal distortion and stress of barrel includes pressure and temperature distributions by finite element analysis to understand dynamic characteristics of barrel.

  • PDF

Fabricating Apparatus of Rheological Material by Rotational Barrel (회전식 Barrel에 의한 레오로지 소재 제조장치)

  • Kim T. W.;Seo P. K.;Oh S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.358-361
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

A CASE STUDY ON THE EFFECT OF NITRIDING FOR CHROME-PLATING LOSS OF SMALL ARMS BARREL (소구경화기 총열의 크롬도금 손실방지를 위한 질화 영향 사례연구)

  • Shin, JW;Shin, TS;Choi, SY;Chung, SH;Kim, BK;Kwon, HR
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.327-333
    • /
    • 2017
  • Purpose: The purpose of this study is to research to protect to loss of chrome-plating of small arms barrel on high temperature in order to extend its life expectency. Methods: The reason why chrome-plating dropped out is main material is weak from heat. Therfore, to make barrel of small arms have higher heat-resistant property, nitriding for barrel before chrome-plating is needed and test of that barrel was handled to improve it. Results: Nitriding before chrome-plating is useful to protect to chrome-plating loss on high temperature. Conclusion: To protect loss of chome-plating of small arms barrel during on firing, pre-nitriding on barrel is effective finally it leads to extend to barrel's life expectency.

Fabricating Apparatus of Rheological Material for forging by Rotational Barrel (회전식 바렐에 의한 단조용 레오로지 소재 제조)

  • Kim T.W.;Seo P.K.;Oh S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng

  • Gui, Ying;Gil, Sun-Kuk;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The effects of variable moisture content, screw speed and barrel temperature on the physicochemical properties of red ginseng powder extrudates were investigated. The raw red ginseng powders were processed in a co-rotating intermeshing twin-screw extruder. Primary extrusion variables were feed moisture content (20 and 30%), screw speed (200 and 250 rpm) and barrel temperature (115 and $130^{\circ}C$). Extruded red ginseng showed higher crude saponin contents (6.72~7.18%) than raw red ginseng (5.50%). Tested extrusion conditions did not significantly affect the crude saponin content of extrudates. Increased feed moisture content resulted in increased bulk density, specific length, water absorption index (WAI), breaking strength, elastic modulus and crude protein content and decreased water solubility index (WSI) and expansion (p<0.05). Increased barrel temperature resulted in increased total sugar content, but decreased reducing sugar content in the extrudate (p<0.05). Furthermore, increased barrel temperature resulted in increased amino acid content and specific length and decreased expansion and bulk density of extrudates only at a higher feed moisture content. The physicochemical properties of extrudates were mainly dependent on the feed moisture content and barrel temperature, whereas the screw speed showed a lesser effect. These results will be used to help define optimized process conditions for controlling and predicting qualities and characteristics of extruded red ginseng.

The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

  • Thin, Thazin;Myat, Lin;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The effects of $CO_2$ injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and $140^{\circ}C$), $CO_2$ injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and ${\beta}$-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of $140^{\circ}C$, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without $CO_2$ injection. In contrast, at a barrel temperature of $140^{\circ}C$, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of $110^{\circ}C$, PD of extruded sorghum without $CO_2$ decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The $CO_2$ injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, ${\beta}$-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.