• Title/Summary/Keyword: Barium oxide

Search Result 82, Processing Time 0.029 seconds

Competitive Adsorption of CO2 and H2O Molecules on the BaO (100) Surface: A First-Principle Study

  • Kwon, Soon-Chul;Lee, Wang-Ro;Lee, Han-Na;Kim, J-Hoon;Lee, Han-Lim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.988-992
    • /
    • 2011
  • $CO_2$ adsorption on mineral sorbents has a potential to sequester $CO_2$. This study used a density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) in the presence of $H_2O$ to determine the role of $H_2O$ on the $CO_2$ adsorption properties on the ($2{\times}2$; $11.05\;{\AA}{\times}11.05\;{\AA}$) BaO (100) surface because BaO shows a high reactivity for $CO_2$ adsorption and the gas mixture of power plants generally contains $CO_2$ and $H_2O$. We investigated the adsorption properties (e.g., adsorption energies and geometries) of a single $CO_2$ molecule, a single $H_2O$ molecule on the surface to achieve molecular structures and molecular reaction mechanisms. In order to evaluate the coordinative effect of $H_2O$ molecules, this study also carried out the adsorption of a pair of $H_2O$ molecules, which was strongly bounded to neighboring (-1.91 eV) oxygen sites and distant sites (-1.86 eV), and two molecules ($CO_2$ and $H_2O$), which were also firmly bounded to neighboring sites (-2.32 eV) and distant sites (-2.23 eV). The quantum mechanical calculations show that $H_2O$ molecule does not influence on the chemisorption of $CO_2$ on the BaO surface, producing a stable carbonate due to the strong interaction between the $CO_2$ molecule and the BaO surface, resulting from the high charge transfer (-0.76 e).

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.

Synthesis of Cobalt Oxide Free Black Color Spinel Pigment (CoO가 첨가되지 않은 스피넬계 흑색안료의 합성)

  • Kim, Jun-Ho;Lee, Seong-Ho;Suh, Man-Chul;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.639-644
    • /
    • 2007
  • Spinel pigments, developing black color in high temperature glazes at oxidation or reduction atmosphere, without CoO because of its high price were synthesized by solid solution method. Ten mixed compositions consisted of NiO, MnO, $Fe_2O_3 and $Mn_2O_3$ were fired at $1250^{\circ}C$ for 1h. The resulting pigments were characterized by using XRD, FT-IR, SEM and UV-vis spectrometer. Structure of the pigments are spinel and particles' shape are spherical or cubic. Glazed tiles containing 5 wt% pigments were fired at $1260^{\circ}C$ and $1240^{\circ}C$ in reduction atmosphere. Color in glazes were analyzed by UV-vis spectrometer. Colors of NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.4875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0125 mole% and NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.3875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.1125 mole% in lime glaze showed black in oxidation, in reduction NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.4875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0125 mole% and NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.55{\cdot}Mn_2O_3$ 0.0125 mole% showed black. In case of lime-barium glaze, NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.3875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.1125 mole%, NiO 0.975 MnO $0.075{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% and NiO 0.925 MnO $0.075{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% showed black color in oxidation and NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.3875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.1125 mole%, NiO 0.925 MnO $0.075{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% and NiO 0.725 MnO $0.275{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% showed black one in reduction.

A Study on the Non-Toxic Compound-based Multi-layered Radiation Shielding Sheet and Improvement of Properties (무독성 화합물 기반의 다층 구조 방사선 차폐 시트 개발과 특성 개선에 관한 연구)

  • Heo, Ye Ji;Yang, Seung u;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • Most of radiation protection clothing is made of lead with excellent radiation shielding because it has excellent process ability and economic efficiency and has a high atomic number. However, lead is classified as a hazardous heavy metal, and there is a risk of lead poisoning. Recently, research to replace lead has been actively conducted. In this study, a research on a shielding sheet with improved physical properties while maintaining the radiation shielding ability equivalent to that of conventional materials by mixing two materials that are harmless to the human body, such as BaSO4 and Bi2O3, and a silicone material binder Was performed. For comparison evaluation with the existing lead shielding sheet, the shielding rate was evaluated using a 40 degree shielding sheet having the highest porosity. As a result, it was analyzed that the shielding rate was superior to 9 % or more at the same thickness. In addition, as a result of studies to improve the physical properties of the shielding sheet, it was analyzed that the shielding sheet mixed with BaSO4/nylon/Bi2O3 was the best.

Characteristics of White Pigments Used in Jiho Oh and Bonung Gu's Paintings Produced in Modern and Contemporary Period (근·현대 시대 오지호와 구본웅 유화작품에 사용된 백색계 안료의 특성 연구)

  • Kim, Jung Heum;Kim, Hwan Ju;Park, Hye Sun;Lim, Sung Jin
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • To investigate the pigments used in modern and contemporary oil paintings, thirty-two paintings by Jiho Oh and Bonung Gu were selected. The white pigment found in the ground and painting layers was identified as lead white (hydrocerussite), zinc white (zinc oxide), titanium white (titanium dioxide in anatase or rutile forms), calcite (calcium carbonate), and barite (barium sulfate). Further, this indicated that pigments differ according to the artist and date of the painting's creation. However, both Oh and Gu used zinc white during the modern and contemporary period, while lead white was replaced by titanium white, barite and calcite. Compared with the overseas studies on pigments and oil paints, the change patterns of pigments were the same with them but the periods of the use were partially different. It seems to be due to the fact that South Korea is linked to the historical background of the art material which was imported from Japan instead of Western countries. Therefore, it is inevitable that any change in the white pigments used for domestic oil paintings occurred at a different time from global transitions. If the results of this study are used in the analysis of art works it is suggested that a database recording such aspects as material properties of oil paints, artistic techniques, and chronology would become important for future conservation science and the study of art history.

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.