• Title/Summary/Keyword: Barge-in

Search Result 226, Processing Time 0.027 seconds

Numerical simulation for a passing ship and a moored barge alongside quay

  • Nam, B.W.;Park, J.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.566-582
    • /
    • 2018
  • A moored barge alongside quay can be influenced by a nearby passing ship and its ship-generated waves. In this study, a time-domain numerical method based on a three-dimensional potential flow solver is developed to investigate the passing ship problem with a moored barge alongside quay. Potential flows around the passing ship and the moored barge alongside a quay is directly solved by using a classical finite element method. Total computational meshes including a passing ship, a moored barge and a quay is updated at each step with an efficient re-mesh algorithm. To validate the developed numerical method, a conventional ship wave problem and a passing ship problem on the open sea has been solved and the solutions are compared with the existing data. Then, a series of numerical computations were carried out to investigate the passing ship effect on a moored barge alongside quay. The characteristics of the passing ship effects are studied with varying the simulation parameters such as passing ship speed, separation distance, wall distances and waves. Focus is made on hydrodynamic forces due to the passing ship effect and its ship waves.

Marine Transportation Analysis for the Offshore Structures Considering the Barge Flexibility (바지의 유연성을 고려한 해상 운송 해석)

  • 김덕수;전석희;허주호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.73-78
    • /
    • 2001
  • In this paper, overall planning and design procedure for the marine transportation are examined. For this purpose, marine transportation analysis for the North Nemba deck structure has been carried out. The results of analysis with the rigid barge transportation are compared to those with the barge considering its flexibility. The environmental conditions, especially waves, are shown to be the most important factor which affected on the structural strength, deformation and fatigue damage.

  • PDF

Desalination technology for a barge mounted plant (해상 플랜트용 담수화장치 기술개발)

  • 김재윤;박상진;송치성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.112-116
    • /
    • 2001
  • In the paper, desalination technology for a barge mounted plant is presented. Desalination system on a barge needs high efficiency, smaller space, and stability. Therfore 4-effect distillation system (capacity of 50ton/day) is designed and constructed. During operation, detailed investigation of different opereation parameters is carried. This paper discusses about product water flowrate and recover ratio with different steam flow rate and feed water rate.

  • PDF

Maneuvering Characteristics of Tug-Barge from the Results of Sea Trial Test (실선시운전시험을 통한 예부선의 조종 특성 연구)

  • Yun, Kun-Hang;Kim, Yeon-Gyu;Yeo, Dong-Jin
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • In order to investigate the maneuverability of tug-barge, sea trial tests such as speed, acceleration/deceleration, $10^{\circ}$ turning, $20^{\circ}$ turning, $10^{\circ}/10^{\circ}$ zigzag and $20^{\circ}/20^{\circ}$ zigzag were conducted with both tug and tug-barge. From the result of turning test, longer tactical diameter and lower rate of turn of tug-barge than those of tug are obtained. From the result of the zigzag test, bigger overshoot angle of tug-barge than that of tug is obtained. When they turned or changed a course, it showed that the barge turned inner side of the trajectory of tug. For the safe navigation, the helmsman of tug-barge should be aware of these maneuvering characteristics.

Structural Design and Analysis of Barge for Canal-Coastal Shipping (운하-연안 연계용 바아지의 구조 설계 및 해석)

  • Kim, Kyung-Su;Son, Choong-Yul;Kim, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.26-34
    • /
    • 1999
  • Two types of barge, container and tanker vessels, are designed with specific dimensions for canal-coastal shipping in Kyung-In canal and Yellow Sea region. The principal dimensions of barges are determined by considering the environment of Kyung-In canal and Yellow Sea. The selection of structure type and structure type and strength confirmation is conducted by the technical rules of Korean Register of Shipping. For the structural analysis of designed barges, the semi-direct stuctural analysis is carried out with using MSC NASTRAN software. Applying identical dimensions to both vessels, the standardization of structural design and analysis procedure are introduced.

  • PDF

Development of the First LNG Bunkering Barge System in Korea (한국 최초의 LNG벙커링 바지시스템 개발)

  • Jung, Dong-Ho;Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Sung, Hong-Gun;Lee, Jae-Ik;Kim, Eun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.162-163
    • /
    • 2018
  • This study introduces the R&D project of development of the 1st LNG bunkering barge in Korea. The Design and pilot test of Barge-To-Ship 500cbm LNG bunkering barge system for coastal trading LNG-fueled ship is proposed. The following technologies will be developed from the project ; Basic/Detail design and pilot test of LNG Bunkering barge system, Basic/Detail design and pilot test of LNG bunkering process system considering LNG loading/unloading, Basic/Detail design and pilot test of 500cbm LNG tank in type-C, Evaluation of bunkering performance according to conditions (environment, SIMOPs) by numerical simulation, Performance evaluation of bunkering barge, towed barge and Barge-To-Ship motion considering ocean environment load, and scenario in Barge-To-Ship LNG bunkering. This project will contribute expansion to LNG-fueled ship industry and pave the way to establish LNG bunkering hub port.

  • PDF

Experimental Study on the Towing Stability of Barges Based on Bow Shape (선수형상이 다른 부선의 예인안정성에 관한 실험 연구)

  • Lee, Sang;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.800-806
    • /
    • 2016
  • The maneuverability of a tugboat is affected by the slewing motion of a barge while the tug is navigating with the barge in water. Therefore, it is necessary to reduce the slewing motion of the barge to allow for safe towing work. In this study, a water tank experiment was performed to examine the factors affecting the slewing motion of a barge and improve course stability. The characteristics of slewing motion vary according to bow shape. Three barge models, each with a different bow shape, were selected as experimental subjects. A comprehensive analysis was performed to study the effects of various factors on the slewing motion of a barge such as the presence of a skeg and bridle, towing speed, and the length of the towline. The effect of the location of the skeg varied according to bow-hull form. The slewing motion of the barge decreased as the length of the towline increased, and this decrease was even greater when a bridle was connected to the towline. In addition, the slewing motion decreased significantly as the length of the bridle increased. The slewing angles did not show significant change with respect to towing speed.

Experimental Study on the Eddy Making Damping Effect at the Roll Motion of a Rectangular Barge (사각형 바지선의 횡동요 와류 감쇠에 대한 실험적 연구)

  • Jung, Kwang-Hyo;Suh, Sung-Bu;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.267-278
    • /
    • 2007
  • This experimental study investigated on the eddy making effect on the roll motion of a rectangular barge in a two-dimensional wave tank. The structure was used to simulate a simplified rectangular barge in the beam sea condition. The structure with a draft one half of its height was hinged at the center of gravity and free to roll by waves. The rectangular barge was tested with regular waves with a range of wave periods that are shorter, equal to, and longer than its roll natural period. Particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The coupled interactions between the incident wave and the barge were demonstrated by examining the vortical flow fields to elucidate the eddy making effect during the roll motion. For incoming wave with a wave period same as the roll natural period, the barge roll motion was reduced by the eddy making damping effect. At the wave period shorter than the roll natural period, the structure roll motion was slightly reduced by the vertical flow around the barge. However, at the wave period longer than the roll natural period, the eddy making effect due to flow separation at structure corners indeed amplifies the roll motion. This indicates that not only can the eddy making effect damp out the roll motion, it can also increase the roll motion.

Experimental and Numerical Study on Towing Stability of Transportation Barge (운송 바지선의 예인안정성에 관한 모형시험 및 수치해석 연구)

  • Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Choi, Sung Kwon;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.102-110
    • /
    • 2014
  • This paper presents the results of an experimental and numerical study on the towing characteristics of a barge. A series of model tests were carried out at the Ocean Engineering Basin of KRISO. A model with a 1:50 scale ratio was constructed out of wood. First, force coefficient tests were performed in order to obtain the surge, sway, and yaw force coefficients of the barge. The focus was the effect of skeg on the force coefficients. The stability parameter was calculated from the force coefficients. Next, towing tests in calm sea were carried out with different towline lengths and towing speeds. The trajectories of the barge and the towline tensions were measured during the tests. The measured trajectories were compared with numerical simulation results using a cross-flow model. The towing stability of the barge in a calm sea is discussed in detail.

Method for Improving the Safety of the Bargemen (부선 승선 선두의 안전성 제고를 위한 제언)

  • Yang, Jinyoung;Kim, Chuhyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.946-954
    • /
    • 2022
  • More than half of barges have been surveyed and designated as an "unmanned barge". The main advantage of the unmanned barge is that it can carry more cargo equivalent to 25 percent of freeboard compared to that of a manned barge. In contrast, it needs an onboard crew barge because the bargeman is in charge of several tasks during sailing such as mooring or unmooring barges to or from a wharf, dropping and heaving up an anchor and turning on and of navigational lights and shapes. The instant recognition is that a tug assume the responsibility of operating a barge; however, different situations exist in which the shipper, as the operator of the barge, hires a tug. Although a tug might be a carrier of a barge under a specific contract, the master of the tug should fulfill his duty to complete its voyage. Most masters are not provided with the particulars of a barge and the information regarding the bargemen onboard, which is believed not to respect the master's authority and lead to an unintended violation of relevant laws. This paper presents three recommendations for resolving these issues: the policy approach for changing unmanned barges to manned barges, issuing a minimum safe manning certificate, and providing the master of tug information on the barge and the crew onboard. Thus, the proposed approach can be expected to improve the crew's working conditions, diminish the violation of the maximum number of persons onboard the barge, and ensure the authority of the master of tug through such recommendations.