• Title/Summary/Keyword: Bandwidth-Guarantee Service

Search Result 149, Processing Time 0.032 seconds

Convergence System to Guarantee Quality of Services (서비스 품질 보장을 위한 통합 전달 시스템)

  • Youn JiWook;Hong SeungWoo;Lee JongHyun;Yeom KyungWhan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.25-30
    • /
    • 2005
  • We propose and design a fully conversed Ethernet and TDM transport system to guarantee qualify of service for Ethernet packet. Developed convergence system can support not only L2 VPN service and premium multimedia service based on MPLS protocol but also TDM leased line service, simultaneously. Developed convergence system has the advantage of providing high reliability that realizes high-quality and real time communications due to assign QoS profile and guarantee bandwidth per channel consist of VCGs without affect adjacent channels. Evaluation for proposed system was successfully performed within the ling network.

A Session Allocation Algorithm for Fair Bandwidth Distribution of Multiple Shared Links (다중 공유 링크들의 공정한 대역폭 분배를 위한 세션할당 알고리즘)

  • Shim, Jae-Hong;Choi, Kyung-Hee;Jung, Gi-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.253-262
    • /
    • 2004
  • In this paper, a session allocation algorithm for a switch with multiple shared links is proposed. The algorithm guarantees the reserved bandwidth to each service class and keeps the delay of sessions belonging to a service class as close as possible even if the sessionsare allocated to different shared links. To support these qualities of services, a new scheduling model for multiple shared links is defined and a session allocation algorithm to decide a shared link to be allocated to a new session on the connection establishmentis developed based on the model. The proposed heuristic algorithm allocates a session to a link including the subclass with the shortest (expected) delay that subclasses of the service class the session belongs to will experience. Simulation results verify that a switch with multiple shared links hiring the proposed algorithm provides service classes with fairer bandwidth allocation and higher throughput, and guarantees reserved bandwidth better than the switch hiring other session algorithms. It also guarantees very similarservice delay to the sessions in the same service class.

A Study on Dynamic Provisioning Mechanism for QoS guarantee in DiffServ Networks (DiffServ 망에서 QoS 보장을 위한 동적 프로비저닝 메카니즘 연구)

  • Rhee, Woo-Seop;Lee, Jun-Hwa;Yang, Mi-Jeong;Lee, Il-Woo;Yu, Jae-Hoon;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2B
    • /
    • pp.105-116
    • /
    • 2003
  • The differentiated service architecture is based on a simple model by applying a per-class service in the core node of the network. However, due to the simplified network behavior, the network structure and provisioning were more complicated. If a service provider wants the dynamic provisioning or better bandwidth guarantee, signaling protocol with QoS parameters or admission control method should be deployed in DiffServ network. However, these methods increase the complexity. Therefore, we proposed DPM2 mechanism for admission control in the DiffServ network. In this paper, we describe and survey the admission control methods that are applicable to IP networks and propose also the dynamic provisioning mechanism based on the bandwidth broker and distributed measurement based admission control and movable boundary bandwidth management to support heterogeneous QoS services in differentiated service networks. For the performance evaluation for proposed mechanism, we used ns-2 simulator.

Leaky Bucket Based Buffer Management Algorithm to Guarantee MCR and Improve Fairness in ATM-GFR (ATM-GFR에서 최소 전송율 보장 및 공평성 향상을 위한 Leaky Bucket 기반의 버퍼 관리 알고리즘)

  • 김권웅;김변곤;전병실
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.520-528
    • /
    • 2002
  • The ATM Forum recently introduced the Guaranteed Frame Rate(GFR) service category GFR service has been designed to support classical best effort traffic such as TCP/IP based traffic. The GFR service not only guarantees a minimum throughput, but also supports fair distribution of available bandwidth to completing VCs. In this paper, we proposed a new buffer management algorithm based on leaky bucket to provide minimum cell rate guarantee and improve fairness. The proposed algorithm reduces complexity and processing overhead of leaky-bucket algorithm to implement easily.

MAX-MIN Flow Control Supporting Dynamic Bandwidth Request of Sessions (세션의 동적 대역폭 요구를 지원하는 최대-최소 흐름제어)

  • Cho, Hyug-Rae;Chong, Song;Jang, Ju-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.638-651
    • /
    • 2000
  • When the bandwidth resources in a packet-switched network are shared among sessions by MAX-MIN flow control each session is required to transmit its data into the network subject to the MAX-MIN fair rate which is solely determined by network loadings. This passive behavior of sessions if fact can cause seri-ous QoS(Quality of Service) degradation particularly for real-time multimedia sessions such as video since the rate allocated by the network can mismatch with what is demanded by each session for its QoS. In order to alleviate this problem we extend the concept of MAX-MIN fair bandwidth allocations as follows: Individual bandwidth demands are guaranteed if the network can accommodate them and only the residual network band-width is shared in the MAX-MIN fair sense. On the other hand if sum of the individual bandwidth demands exceeds the network capacity the shortage of the bandwidth is shared by all the sessions by reducing each bandwidth guarantee by the MAX-MIN fair division of the shortage. we present a novel flow control algorithm to achieve this extended MAX-MIN fairness and show that this algorithm can be implemented by the existing ATM ABR service protocol with minor changes. We not only analyze the steady state asymptotic stability and convergence rate of the algorithm by appealing to control theories but also verify its practical performance through simulations in a variety of network scenarios.

  • PDF

Estimation of Degradation Period Ratio for Adaptive Framework in Mobile Cellular Networks (적응형 구조를 갖는 이동통신망에서 호 저하 시간 비율 추정)

  • Jung, Sung-Hwan;Lee, Sae-Jin;Hong, Jung-Wan;Lee, Chang-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.312-320
    • /
    • 2003
  • Recently there is a growing interest in mobile cellular network providing multimedia service. However, the link bandwidth of mobile cellular network is not sufficient enough to provide satisfactory services to users. To overcome this problem, an adaptive framework has been proposed. In this study, we propose a new method of estimating DPR(Degradation Period Ratio) in an adaptive multimedia network where the bandwidth of ongoing call can be dynamically adjusted during its lifetime. DPR is a QoS(Quality of Service) parameter which represents the ratio of allocated bandwidth below a pre-defined target to the whole service time of a call. We improve estimation method of DPR using DTMC(Discrete Time Markov Chain) model by calculate mean degradation period, degradation probability more precisely than in existing studies. Under Threshold CAC(Call Admission Control) algorithm, we present analytically how to guarantee QoS to users and illustrate the method by numerical examples. The proposed method is expected to be used as one of CAC schemes in guaranteeing predefined QoS level of DPR.

A Weighted Fair Queuing Scheduler Guaranteeing Differentiated Packet Loss Rates (차별화된 패킷 손실률을 보장하는 가중치 기반 공정 큐잉 스케줄러)

  • Kim, Tae Joon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1453-1460
    • /
    • 2014
  • WFQ (Weighted Fair Queuing) provides not only fairness among traffic flows in using bandwidth but also guarantees the Quality of Service (QoS) that individual flow requires, which is why it has been applied to the resource reservation protocol (RSVP)-capable router. The RSVP allocates an enough resource to satisfy both the rate and end-to-end delay requirements of the flow in the condition of no packet loss, and the WFQ scheduler guarantees those QoS requirements with the allocated resource. In practice, however, most QoS-guaranteed services allow a degree of packet loss, especially from 0.1% to 3% for Voice over IP. This paper discovers that the packet loss rate of each traffic flow is determined by only its time-stamp adjustment value, and then enhances the WFQ to provide a differentiated packet loss guarantee under general traffic conditions in terms of both traffic characteristics and QoS requirements. The performance evaluation showed that the proposed WFQ could increase the utilization of bandwidth by 8~11%.

Token with Timer Algorithm for Guaranteeing Periodic Communication Services in Timed Token Protocol Networks

  • Yeol, Choo-Young;Kim, Cheeha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.57.2-57
    • /
    • 2001
  • Timed token protocols inadequately provide periodic communication service, although this is crucial for hard real time systems. We propose an approach to guaranteeing periodic communication service on a timed token protocol network. In this approach, we allocate bandwidth to each node so that the summation of bandwidth allocations is Target Token Rotation Time (TTRT). If a node cannot consume the allocated time, the residual time can be used by other nodes for non-periodic service using a timer which contains the unused time value and is appended to the token. This approach can always guarantee transmission of real-time messages before their deadlines when the network utilization is less than 50%.

  • PDF

TCP Throughput Guarantee using Packet Buffering (패킷 버퍼링을 이용한 TCP 처리율 보장 방법)

  • Choi, Sun-Woong;Kim, Chung-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.2
    • /
    • pp.242-250
    • /
    • 2001
  • This paper deals with the TCP bandwidth guarantee problem in a differentiated serviccs(Diffserv) network. The Diffserv assured s<:rvice differentiates packet drop probabilities to guarantee the promised bandwidth even under network congestion. However a token buffer marker fails to show adequate performance because TCI' generates packets according to the unique Tel' congestion control mechanism. We propose a marker that uses a data buffer as well as a token buffer. The marker with a data buffer works well with the assured service mechanism because it smooths Tel' traffic. We showed that the marker with a data buffer achieves the target throughput better than a marker with a token buffer only. We also showed that the optimal buffer size is proportional to reserved throughput and HTT.

  • PDF

A Study on the Improvement of Real-Time Traffic QoS using the Delay Guarantee Queue Service Discipline of End-to-End (종단간 지연 큐 서비스 방식을 이용한 실시간 트래픽 QoS 개선에 관한 연구)

  • 김광준;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.236-247
    • /
    • 2002
  • We propose a cell-multiplexing scheme for the real-time communication service in ATM network and a new service discipline guarantee end-to-end delay based on pseudo-isochronous cell switching. The proposed scheme consists of two level frame hierarchy, upper and lower frame, which is used to assign the bandwidth and to guarantee the requested delay bound, respectively. Since the Proposed algorithm employs two level frame hierarchy, it can overcome the coupling problem which is inherent to the framing strategy It can be comparatively reduce the complexity, and still guarantee the diverse delay bounds of end-to-end. Besides, it consists of two components, traffic controller and scheduller, as the imput traffic description model and regulates the input traffic specification. The function of the traffic controller is to shape real -time traffic to have the same input pattern at every switch along the path. The end-to-end delay is bounded by the scheduller which can limit the delay variation without using per-session jitter controllers, and therefore it can decrease the required buffer size. The proposed algorithm can support the QoS's of non-real time traffic as well as those of real time traffic.