• Title/Summary/Keyword: Bandwidth Requirements

Search Result 330, Processing Time 0.021 seconds

Design of a CPW (Coplanar Waveguide) fed dual-band slot antenna (CPW 급전 이중대역 슬랏 안테나 설계)

  • 김봉준;오경진;최재훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.215-218
    • /
    • 2002
  • In this paper, a dual-frequency printed slot antenna loaded with an open-ring conducting strip and capacitively fed by a coplanar waveguide(CPW) is designed. The designed antenna has a bandwidth of 240㎒(1690㎒-1930㎒) at PCS frequency band and of 160㎒(2380㎒-2540㎒) at WLAN frequency band. In both frequency ranges, pattern and gain requirements are satisfied. The commercial software, IE3D, was used to design slot antenna. The predicted characteristics along with measured data are presented for verification purpose.

  • PDF

Scalable Media Object Framework of MPEG-2 Video for QoS Adaptation (QoS 적응을 위한 MPEG-2 비디오의 스케일러블 미디어 객체 프레임웍에 관한 연구)

  • Kim, Hyeong-Cheol;Jeong, Chan-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.2922-2931
    • /
    • 1999
  • In this paper, we propose a new framework for scalable media object to adapt the various QoS requirements in the heterogeneous networking environment. An MPEG-2 video is split into a set of scalable media objects in terms of temporal scaling and fidelity scaling. The portion of the scalable media objects is selectively delivered to adapt the QoS requirement. This framework can satisfy the various QoS requirements on bandwidth, even though the clients share a multipoint channel. By analysis on the rate-distortion characteristics of scalable media object framework, we shows our approach is feasible to support the various QoS requirements.

  • PDF

CFP Scheduling for Real-Time Service and Energy Efficiency in the Industrial Applications of IEEE 802.15.4

  • Ding, Yuemin;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.87-101
    • /
    • 2013
  • In industrial applications, sensor networks have to satisfy specified time requirements of exchanged messages. IEEE 802.15.4 defines the communication protocol of the physical and medium access control layers for wireless sensor networks, which support real-time transmission through guaranteed time slots (GTSs). In order to improve the performance of IEEE 802.15.4 in industrial applications, this paper proposes a new traffic scheduling algorithm for GTS. This algorithm concentrates on time-critical industrial periodic messages and determines the values of network and node parameters for GTS. It guarantees real-time requirements of periodic messages for industrial automation systems up to the order of tens to hundreds of milliseconds depending on the traffic condition of the network system. A series of simulation results are obtained to examine the validity of the scheduling algorithm proposed in this study. The simulation results show that this scheduling algorithm not only guarantees real-time requirements for periodic message but also improves the scalability, bandwidth utilization, and energy efficiency of the network with a slight modification of the existing IEEE 802.15.4 protocol.

GMPLS-based Recovery Scheme Handling the Requirements for Various Service Types (다양한 서비스들의 요구사항을 만족하는 GMPLS 기반 복구 기법)

  • Lee, Yonggyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.714-724
    • /
    • 2022
  • The spread of mobile devices comes to increase explosive data traffic and then results in various types of service demands. In order to satisfy the increment of traffic and the requirements for various services, optical internet technologies that transmit several Tbps through only a single optical fiber have been actively studied. Because of the large bandwidth, an optical link can accommodate a large number of service types. Therefore, new technologies are required to guarantee the survivability of optical internet and handle the requirements of each service. So, in this article, a new scheme based on GMPLS technologies is proposed to deal with the various service demands and survivability issues in IP over WDM networks.

Guaranteeing delay bounds based on the Bandwidth Allocation Scheme (패킷 지연 한계 보장을 위한 공평 큐잉 기반 대역할당 알고리즘)

  • 정대인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1134-1143
    • /
    • 2000
  • We propose a scheduling algorithm, Bandwidth Allocation Scheme (BAS), that guarantees bounded delay in a switching node. It is based on the notion of the GPS (Generalized Processor Sharing) mechanism, which has clarified the concept of fair queueing with a fluid-flow hypothesis of traffic modeling. The main objective of this paper is to determine the session-level weights that define the GPS sewer. The way of introducing and derivation of the so-called system equation' implies the approach we take. With multiple classes of traffic, we define a set of service curves:one for each class. Constrained to the required profiles of individual service curves for delay satisfaction, the sets of weights are determined as a function of both the delay requirements and the traffic parameters. The schedulability test conditions, which are necessary to implement the call admission control, are also derived to ensure the proposed bandwidth allocation scheme' be able to support delay guarantees for all accepted classes of traffic. It is noticeable that the values of weights are tunable rather than fixed in accordance with the varying system status. This feature of adaptability is beneficial towards the enhanced efficiency of bandwidth sharing.

  • PDF

A Study on Broad-Band Design of Electromagnetic Wave Absorber in Ferrite Cylinder Insertion Type (페라이트 기둥 삽입형 전파흡수체의 광대역 설계에 관한 연구)

  • 이창우;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • With a rapid progress in electronic industry we enjoy various conveniences of life. As many kinds of information equipments are supplied even to most of individuals as to be called an information society, we are exchanging much information with one another surprisingly. Consequently the occupation density of microwave frequency band is highly increased, and electromagnetic environment is getting more seriously bad. It often gives fatal blow to even human life and thus becomes serious social problems. Electromagnetic wave absorbers for anechoic chamber are needed to broaden the effective frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 400 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber are designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6,000 MHz in the bandwidth. Then we achieved the goal by design the inserting square Ferrite Cylinders with the thickness less than 17.5 mm on existing grid type Ferrite absorber. The purpose of this research is on the development of very wide-band electromagnetic absorber for a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for preventing TV ghost, etc.

  • PDF

An Analysis of Memory Access Complexity for HEVC Decoder (HEVC 복호화기의 메모리 접근 복잡도 분석)

  • Jo, Song Hyun;Kim, Youngnam;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.114-124
    • /
    • 2014
  • HEVC is a state-of-the-art video coding standard developed by JCT-VC. HEVC provides about 2 times higher subjective coding efficiency than H.264/AVC. One of the main goal of HEVC development is to efficiently coding UHD resolution video so that HEVC is expected to be widely used for coding UHD resolution video. Decoding such high resolution video generates a large number of memory accesses, so a decoding system needs high-bandwidth for memory system and/or internal communication architecture. In order to determine such requirements, this paper presents an analysis of the memory access complexity for HEVC decoder. we first estimate the amount of memory access performed by software HEVC decoder on an embedded system and a desktop computer. Then, we present the memory bandwidth models for HEVC decoder by analyzing the data flow of HEVC decoding tools. Experimental results show the software decoder produce 6.9-40.5 GB/s of DRAM accesses. also, the analysis reveals the hardware decoder requires 2.4 GB/s of DRAM bandwidth.

Switched Digital Video for the Efficient Utilization of Bandwidth In Cable Systems (케이블방송의 효율적 주파수 활용을 위한 SDV 전송 기술)

  • Choi, Jin-Chul;Lee, Chae-Woo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.305-318
    • /
    • 2011
  • Since switched digital video (SDV) provides specific programs only to the subscribers who request the programs, SDV has attracted considerable interest of MSOs for bandwidth efficiency. In North America, MSOs service over 2.3 million households with the SDV for cable networks. In Korea, since demand of HD program, high-speed Internet, VoD, and VoIP is noticeably rising, the SDV is considered as the alternative for bandwidth saving and efficient managing. In this paper, the characteristics, operating structure, and bandwidth saving of the SDV are discussed and technical requirements for the SDV are also introduced. The channel switching performance and stability of the SDV are analyzed through the test-bed.

Bandwidth-based Nonlinear Pricing on a Shared Link (공유 링크에서의 대역폭 기반 비선형 요금제)

  • Cho, Moon-Kyo;Park, Myeong-Cheol;Choi, Mun-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11B
    • /
    • pp.709-717
    • /
    • 2007
  • Pricing a network service aims for congestion control of the network as well as economic efficiency. A monopolistic supplier providing users with a network service on a shared link needs a pricing schedule that maximizes revenue under the link's bandwidth constraint and guarantees the bandwidth purchased by the users. In that case, nonlinear pricing is an efficient scheme which meets both requirements. This study reviews how nonlinear pricing can be applied to the network service under the constraint and shows that the nonlinear pricing may result in a fixed unit price of bandwidth as linear pricing when demand characteristics of the users follow a power law. Also, the way how the provider with incomplete information on the demand distribution seeks for the optimal pricing from the degree of the network congestion is introduced and the relationship between the development direction of the Internet and internet pricing is considered based on the results of the study.

Flexible, Extensible, and Efficient VANET Authentication

  • Studer, Ahren;Bai, Fan;Bellur, Bhargav;Perrig, Adrian
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.574-588
    • /
    • 2009
  • Although much research has been conducted in the area of authentication in wireless networks, vehicular ad-hoc networks (VANETs) pose unique challenges, such as real-time constraints, processing limitations, memory constraints, frequently changing senders, requirements for interoperability with existing standards, extensibility and flexibility for future requirements, etc. No currently proposed technique addresses all of the requirements for message and entity authentication in VANETs. After analyzing the requirements for viable VANET message authentication, we propose a modified version of TESLA, TESLA++, which provides the same computationally efficient broadcast authentication as TESLA with reduced memory requirements. To address the range of needs within VANETs we propose a new hybrid authentication mechanism, VANET authentication using signatures and TESLA++ (VAST), that combines the advantages of ECDSA signatures and TESLA++. Elliptic curve digital signature algorithm (ECDSA) signatures provide fast authentication and non-repudiation, but are computationally expensive. TESLA++ prevents memory and computation-based denial of service attacks. We analyze the security of our mechanism and simulate VAST in realistic highway conditions under varying network and vehicular traffic scenarios. Simulation results show that VAST outperforms either signatures or TESLA on its own. Even under heavy loads VAST is able to authenticate 100% of the received messages within 107ms. VANETs use certificates to achieve entity authentication (i.e., validate senders). To reduce certificate bandwidth usage, we use Hu et al.'s strategy of broadcasting certificates at fixed intervals, independent of the arrival of new entities. We propose a new certificate verification strategy that prevents denial of service attacks while requiring zero additional sender overhead. Our analysis shows that these solutions introduce a small delay, but still allow drivers in a worst case scenario over 3 seconds to respond to a dangerous situation.