• Title/Summary/Keyword: Band Notch

Search Result 88, Processing Time 0.028 seconds

X-band Microwave Photonic Filter Using Switch-based Fiber-Optic Delay Lines

  • Jung, Byung-Min
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • An X-band microwave photonic (MWP) filter using switch-based fiber-optic delay lines has been proposed and experimentally demonstrated. It is composed of two electro-optic modulators (EOMs) and $2{\times}2$ optical MEMS-switch-based fiber-optic delay lines. By changing time-delay difference and coefficients of each wavelength signal by using fiber-optic delay lines and an electro-optic modulator, respectively, a bandpass filter or a notch filter can be implemented. For an X-band MWP filter with four channel elements, fiber-optic delay lines with the unit time-delay of 50 ps have been experimentally realized and the frequency responses corresponding to the time-delays has been measured. The measured frequency response error at center frequency and the time-delay difference error were 180 MHz at 10 GHz and 3.2 ps, respectively, when the fiber-optic delay line has the time-delay difference of 50 ps.

A CPW-Fed Ultra-Wideband Planar Monopole Antenna for UHF Band Applications (UHF 대역용 CPW 급전 초광대역 평면형 모노폴 안테나)

  • Yoo, Tae-Hoon;Kim, Tae-Hyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.761-767
    • /
    • 2012
  • In this paper, a novel ultra-wideband planar monopole antenna for the UHF communications and Digital-TV reception is proposed. The proposed antenna fed by a coplanar waveguide(CPW) is based on a triangular patch that has a broadband characteristic. To further increase the bandwidth of the triangular patch antenna, the top side of the regular triangular patch is loaded with a notch cut and each oblique side with a step. In addition, a slope is given to the ground plane of the CPW structure. Experimental results show that the -10 dB return loss bandwidth of the proposed antenna is 2,320 MHz from 480~2,800 MHz(5.83:1 bandwidth), which covers all the frequency bands of the various wireless communication systems and Digital TV broadcasting in the UHF band. Within the entire operating frequency range, the measured antenna gain in y-z plane(E-plane) varies from 3.01 to 4.71 dBi.

A Design of Power Line Communication system using Wavelet OFDM (Wavelet OFDM 기법을 이용한 전력선 통신 시스템 설계)

  • Moon, Ki-Tak;Kim, Joo-Seok;Jang, Dong-Won;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.871-876
    • /
    • 2010
  • Currently the development of powerline communication technology has become possible due to the high-speed communications. But the communication lines used for power line communication, not wires carrying power wiring is because when sending high-frequency wireless communication system unintentionally be influenced. To compensate for these shortcomings by using notch filters to reduce interference has been studied. Wavelet-based OFDM on the other hand by the method has been used to reduce interference. Wavelet-based OFDM has been used in the existing powerline OFDM scheme using FFT instead of the general structure of the CMFB filters to generate a signal. By doing so, subtly signals per frequency band, cut it, is to realize how efficient highways. It brought a deep filter characteristics, a flexible notch filter can be achieved without an external circuit has an advantage. In this paper, Using Wavelet OFDM powerline communication system is designed and presented the results of simulations.

Optimized Design of Wide-Band Subarray Using a Genetic Algorithm (유전 알고리즘을 이용한 광대역 부배열 최적화 설계)

  • Kim, Doo-Soo;Lee, Dong-Koog;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2012
  • This paper specifies on optimized design of wide-band subarray using a Genetic Algorithm. First wide-band radiator was designed at triangle lattice of infinite array structure. It is the radiator of notch type that has a wide-band characteristic of ratio 2:1 between maximum and minimum frequency satisfying active reflection coefficient under -10 dB at boresight. And a Genetic Algorithm was applied to optimize subarray partition of antenna consisting of 1,100 array elements. It was confirmed that an optimized subarray antenna has a 4.5-5.5 dB more improved maximum SLL (Side-Lobe Level) than regular subarray antenna.

Ultra-Wideband Band-Pass Filter with Notched Wireless-LAN band (무선 랜 대역을 저지하는 초광대역 대역통과 여파기)

  • Jung, Seung-Back;Yang, Seung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.60-65
    • /
    • 2009
  • In this paper, we present a compact Ultra-Wideband band-pass later with notched band at fireless-LAN band using a band-pass and band-notch filter. The structure of our proposed band-pass filter is very simple, and the DGS(Defected Ground Structure) structure is used to get the low-pass filter characteristic, and an embedded open-stub structure is used to get the notched filter. Our proposed band-pass filter can be much smaller than a cascaded filter. As a result of measurement, the insertion loss is less than 0.7dB throughout the pass-band of $2.21GHz{\sim}10.92GHz$, the return loss is more than 17dB and the group delay maximum variation is 0.24ns and a notched band is at $5.3GHz{\sim}5.7GHz$.

An UWB Design of Plane Bow-Tie Monopole Antenna (평면형 보우타이 모노폴 안테나의 초광대역 설계)

  • Kim, Tae-Woo;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1212-1218
    • /
    • 2014
  • This paper proposes a planar bow-tie UWB antenna by modifying the ground patch of a reference bowtie-monopole antenna satisfying low band of UWB. The proposed antenna was implemented with five-angled ground patch to be operated in whole UWB band, while the reference antenna had a ground patch of half circle type. The measured return loss satisfies less than -10 dB in 3.1~10.6 GHz, except 4.9~5.8 GHz rejection band. The measured radiation pattern is almost the same with that of the monopole antenna. The radiation gain reduction is about 8 dB at rejection band.

A Study on Low Delay FM Detector for AF Band (AF대용 저지연 FM 검파기에 관한 연구)

  • 김형교;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.24-27
    • /
    • 1980
  • 본 논문에서는 J.Klapper와 E.J. Kratt[1]III에 의하여 제안된 저지연 FM검파기의 일반적인 왜곡해석을 Taylor[2] 반수전개법에 의하여 또한 상기의 저지연 FM검파기에서 사용한 RLC Notch 필터를 동 FM 검파기의 IC화를 고려하여 Twin-Tee RC 능동필터로 대치하고 예상되는 검파신호의 지연시간을 검토하였다.

  • PDF

A Multi-Band Antenna on Automobile-Glass Using Flexible PCB (유연성 기판을 이용한 자동차 유리 부착용 다중 대역 안테나)

  • Kim, In-Bok;Woo, Dong-Sik;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • In this paper, we propose a multi-band monopole antenna with a band-notching U-slot, which is fabricated inside the flexible polymide film substrate. The U-shaped slot located on the patch-shaped monopole antenna provides band-notch at 2.7 GHz, but also helps to improve return loss at adjacent frequency bands. The performance of the antenna attached on an automobile-glass has been simulated and measured. The fabricated antenna provides more than 10 dB return loss for ISM band(2.4~2.483 GHz) and WAVE band(5.85~5.925 GHz), 2.8~5.7 dBi maximum gain, and good radiation patterns.

Band-Notched Ultra-Wideband Antenna with Asymmetric Coupled-Line for WLAN and X-Band Military Satellite

  • Lee, Jun-Hyuk;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This paper presents a novel ultra-wideband (UWB) antenna that rejects narrow and broad bands and is suitable for wireless communications. The base of the proposed antenna has a circular patch that can cover the UWB frequency range (3.1~10.6 GHz). The interference issues caused by co-existence within the UWB operation frequency are overcome by a design that uses a parallel-coupled asymmetric dual-line with a circular monopole antenna. The proposed antenna showed a stable radiation pattern, realized gain and reflection coefficient lower than -10 dB across the UWB operation bandwidth except for 5.15~5.85 GHz and 7.25~8.4 GHz. The fabrication, simulation, and measurement results obtained for the proposed antenna were in good agreement with the expected values.