• 제목/요약/키워드: Banach valued random variable

검색결과 2건 처리시간 0.018초

Banach 공간에서 독립인 확률요소들의 Tail 합에 대한 대수의 법칙에 대하여 (On the Tail Series Laws of Large Numbers for Independent Random Elements in Banach Spaces)

  • 남은우
    • 한국콘텐츠학회논문지
    • /
    • 제6권5호
    • /
    • pp.29-34
    • /
    • 2006
  • 본 연구에서는, Banach 공간의 값을 갖는 확률요소들의 합 $S_n=\sum_{i=1}^nV-i$ 수렴하는 경우에, Tail 합 $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}V-i$에 대한 대수의 법칙을 고찰하여 $S_n$이 하나의 확률변수 S로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 확률변수들의 Tail 합과 확률요소들의 Tail 합에 대한 극한 성질의 유사성을 연구하여, Banach 공간에서 독립인 확률요소들의 Tail 합에 대한 약 대수의 법칙과 하나의 수렴법칙이 동등함을 기술하는 기존의 정리를 다른 대체적인 방법으로 증명한다.

  • PDF

A NOTE ON SUMS OF RANDOM VECTORS WITH VALUES IN A BANACH SPACE

  • Hong, Dug-Hun;Kwon, Joong-Sung
    • 대한수학회논문집
    • /
    • 제10권2호
    • /
    • pp.439-442
    • /
    • 1995
  • Let ${X_n : n = 1,2,\cdots}$ be a sequence of pairwise independent identically distributed random vectors taking values in a separable Hilbert space H such that $E \Vert X_1 \Vert = \infty$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and for any real $\alpha$ with $0 < \alpha < 1$ define a sequence ${\gamma_n(\alpha)}$ as $\gamma_n(\alpha) = inf {r : P(\Vert S_n \Vert \leq r) \geq \alpha}$. Then $$ lim_{n \to \infty} sup \Vert S_n \Vert/\gamma_n(\alpha) = \infty $$ holds. This is a generalization of Vvedenskaya[2].

  • PDF