• Title/Summary/Keyword: Baltic dry bulk index

Search Result 13, Processing Time 0.016 seconds

Risk Estimates of Structural Changes in Freight Rates (해상운임의 구조변화 리스크 추정)

  • Hyunsok Kim
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.4
    • /
    • pp.255-268
    • /
    • 2023
  • This paper focuses on the tests for generalized fluctuation in the context of assessing structural changes based on linear regression models. For efficient estimation there has been a growing focus on the structural change monitoring, particularly in relation to fields such as artificial intelligence(hereafter AI) and machine learning(hereafter ML). Specifically, the investigation elucidates the implementation of structural changes and presents a coherent approach for the practical application to the BDI(Baltic Dry-bulk Index), which serves as a representative maritime trade index in global market. The framework encompasses a range of F-statistics type methodologies for fitting, visualization, and evaluation of empirical fluctuation processes, including CUSUM, MOSUM, and estimates-based processes. Additionally, it provides functionality for the computation and evaluation of sequences of pruned exact linear time(hereafter PELT).

Bayesian VAR Analysis of Dynamic Relationships among Shipping Industry, Foreign Exchange Rate and Industrial Production (Bayesian VAR를 이용한 해운경기, 환율 그리고 산업생산 간의 동태적 상관분석)

  • Kim, Hyunsok;Chang, Myunghee
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.2
    • /
    • pp.77-92
    • /
    • 2014
  • The focus of this study is to analyse dynamic relationship among BDI(Baltic Dry-bulk Index, hereafter BDI), forex market and industrial production using monthly data from 2003-2013. Specifically, we have focused on the investigations how monetary and real variable affect shipping industry during recession period. To compare performance between general VAR and Bayesian VAR we first examine DAG(Directed Acyclic Graph) to clarify causality among the variables and then employ MSFE(mean squared forecast error). The overall estimated results from impulse-response analysis imply that BDI has been strongly affected by other shock, such as forex market and industrial production in Bayesian VAR. In particular, Bayesian VAR show better performance than general VAR in forecasting.

Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index) (COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.161-173
    • /
    • 2021
  • The shipping industry plummeted and was depressed due to the global economic crisis caused by the bankruptcy of Lehman Brothers in the US in 2008. In 2020, the shipping market also suffered from a collapse in the unstable global economic situation due to the COVID-19 pandemic, but unexpectedly, it changed to an upward trend from the end of 2020, and in 2021, it exceeded the market of the boom period of 2008. According to the Clarksons report published in May 2021, the decrease in cargo volume due to the COVID-19 pandemic in 2020 has returned to the pre-corona level by the end of 2020, and the tramper bulk carrier capacity of 103~104% of the Panamax has been in the ports due to congestion. Earnings across the bulker segments have risen to ten-year highs in recent months. In this study, as factors affecting BDI, the capacity and congestion ratio of Cape and Panamax ships on the supply side, iron ore and coal seaborne tonnge on the demand side and Granger causality test, IRF(Impulse Response Function) and FEVD(Forecast Error Variance Decomposition) were performed using VAR model to analyze the impact on BDI by congestion caused by strengthen quarantine at the port due to the COVID-19 pandemic and the loading and discharging operation delay due to the infection of the stevedore, etc and to predict the shipping market after the pandemic. As a result of the Granger causality test of variables and BDI using time series data from January 2016 to July 2021, causality was found in the Fleet and Congestion variables, and as a result of the Impulse Response Function, Congestion variable was found to have significant at both upper and lower limit of the confidence interval. As a result of the Forecast Error Variance Decomposition, Congestion variable showed an explanatory power upto 25% for the change in BDI. If the congestion in ports decreases after With Corona, it is expected that there is down-risk in the shipping market. The COVID-19 pandemic occurred not from economic factors but from an ecological factor by the pandemic is different from the past economic crisis. It is necessary to analyze from a different point of view than the past economic crisis. This study has meaningful to analyze the causality and explanatory power of Congestion factor by pandemic.