• Title/Summary/Keyword: Balloon Shape

Search Result 25, Processing Time 0.029 seconds

Spontaneous Regression of the Pseudoaneurysm Developed after Balloon Occlusion of the Direct Carotid-cavernous Fistula

  • Lee, Chae-Heuck;Kim, Myoung-Soo;Lee, Ghi-Jai
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.5
    • /
    • pp.323-326
    • /
    • 2007
  • Direct carotid-cavernous fistula [CCF] is a common post-traumatic disease. However, pseudoaneurysm formation after balloon occlusion is a rare complication. The author present such a case with review of the literature. A 26-year-old man involved in a motor vehicle accident as a driver. Only mild conjunctival injection and minimal exophthalmos on the right eye were noted after trauma. However, angiography revealed a direct CCF and dissection of the proximal intracranial internal carotid artery [ICA]. After first balloon occlusion of the CCF, the patient redeveloped fistula due to early deflation of the balloon. After the second balloon occlusion, pseudoaneurysm and diplopia were developed with the change of balloon position and shape. However, visual symptom spontaneously resolved and pseudoaneurysm was also decreased within 6 months after balloon occlusion.

Orbital Floor Reconstruction Using Endoscope and Selected Urethral Balloon Catheter (내시경과 선택적 도뇨관 풍선을 이용한 안와하벽복원술)

  • Choi, Hwan-Jun;Lee, Joo-Chul;Lee, Hyung-Gyo;Kim, Jun-Hyuk
    • Archives of Plastic Surgery
    • /
    • v.38 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • Purpose: Blow-out fractures can be reduced using various methods. The orbital reconstruction technique using a balloon under endoscopic control has advantages over other methods. However, this method has some problems too, such as postoperative follow-up, management of the balloon catheter, and reduction of the posterior orbital floor. Thus, we developed a simple, effective method for orbital floor reduction that involves molding and shaping the antral balloon catheter. Methods: A 0, 30, or $70^{\circ}$, 4-mm endoscope was placed though a two-point, 5-mm maxillary antrostomy. The balloon catheter is placed directly at the orbital apex to reconstruct the anterior shelf (spherical shape), while it is turned in a U-shape towards the anterior maxilla for the posterior shelf (elliptical shape). Orbital floor defects, compound or comminuted fractures are reconstructed with alloplastic materials through an open lid incision under the endoscopic control. Results: This technique was applied to ten patients with orbital floor fractures: five anterior shelf and five posterior shelf fracture, respectively. Four of the patients had zygomatico-orbital fractures, while the rest had isolated orbital floor fractures. Two patients were given porous polyethylene implants Synpor$^{(R)}$) and three underwent reconstruction with a resorbable mesh plate. No complication associated with this technique was identified. Conclusion: The freestyle placement and selection of a urinary balloon catheter under endoscopic control and the preoperative estimation of the volume enhanced the stabilization of the orbital contour. This method improves the adaptation of the orbital floor without the risk of injuring the surrounding orbital contents, dissecting blindly, or using sharp traction. One drawback of this method is the patient's discomfort from the catheter during treatment.

An Experimental Investigation of Yarn Tension in Simulated Ring Spinning

  • Tang Zheng-Xue;Wang Xungai;Fraser W. Barrie;Wang Lijing
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.275-279
    • /
    • 2004
  • Yarn tension is a key factor that affects the efficiency of a ring spinning system. In this paper, a specially constructed rig, which can rotate a yam at a high speed without inserting any real twist into the yarn, was used to simulate a ring spinning process. Yarn tension was measured at the guide-eye during the simulated spinning of different yarns at various balloon heights and with varying yarn length in the balloon. The effect of balloon shape, yarn hairiness and thickness, and yam rotating speed, on the measured yarn tension, was examined. The results indicate that the collapse of balloon shape from single loop to double loop, or from double loop to triple etc, lead to sudden reduction in yarn tension. Under otherwise identical conditions, a longer length of yarn in the balloon gives a lower yarn tension at the guide-eye. In addition, thicker yarns and/or more hairy yarns generate a higher tension in the yarn, due to the increased air drag acting on the thicker or more hairy yarns.

Detection of Foreign Body in Esophageal Foreign Body Model Using Three Dimensional Reconstruction Technique (식도 이물 모델에서 이물 탐색을 위한 삼차원 재구성법의 활용)

  • Woo, Kuk Sung;Yoo, Young Sam;Kim, Dong Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.18 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Objective This study was conducted to gather basic information of 3D CT in detecting and gaining information of esophageal foreign body (FB) models. Materials and Methods The chest model was made using PVC bottle, rubber balloon and plaster. Fish bone, Persimmon stone were used to mimic foreign bodies of esophageal model. The foreign body models were inserted into the balloon removing air from it and the balloon was sealed. The esophageal FB model was inserted into the chest model. The remaining space in the chest model was filled with fish paste and water to simulate soft tissue around esophagus. CT of chest model was reconstructed three-dimensionally by Rapidia software to make images of foreign body models. The axial CT, MPR image and VOI image were compared with real foreign body materials as to shape, size, location and orientation. Results Esophageal FB models were easily made. CT data gave good 3D images and showed realistic foreign body materials. Conclusion The results indicate the usefulness of 3D CT technique to help in diagnosis of esophageal foreign body models.

  • PDF

A Study on the Safety of Continuous Hemostasis after Arterial Puncture Intervention (동맥천자 인터벤션 시술 후 지속지혈 안전성에 대한 연구)

  • Kim, Seung-Gi
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.195-199
    • /
    • 2019
  • Most of the vascular procedures performed for various diagnoses and treatments of various abdominal intervention procedures performed by the Department of Radiology and Angiography are performed by puncture of the femoral artery. For this reason, patients should undergo blood-related tests such as prothrombin time (PT) and partial thromboplatin time (PTT). Therefore, many patients are instructed to take precautions such as putting a sandbag on the puncture site to prevent delayed hemorrhage after hemostasis of the femoral artery puncture site, and not to bend the leg of the treated area for about 3 hours. Because of this, many patients have complained of pain during the procedure and inconvenience during the absolute bed rest time in the ward. The purpose of this study was to compare the safety of balloon ancillary devices with sandbags placed on the hemostasis site to prevent delayed hemorrhage after arterial puncture. We compared the safety of each patient with the results of medical records in consideration of the problem that the patient could not press with the focus, the position of the patient was changed depending on the patient's body shape, and the problem of falling down according to the location of the puncture site. As a result, the use of a balloon type ancillary device improves the effect of continuous hemostasis, reduces discomfort during the patient's absolute stabilization time, increases the patient's satisfaction, and is a good alternative to the existing sandbag.

Modeling and Simulation of a Shape Memory Release Device (형상기억합금을 이용한 분리장치의 모델 및 모사에 관한 연구)

  • Lee, Yeung-Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2006
  • Aerospace applications use pyrotechnic devices with many different functions. Functional shock, safety, overall system cost issue, and availability of new technologies, however, question the continued use of these mechanisms on aerospace applications. Release device is an important example of a task usually executed by pyrotechnic mechanisms. Many aerospace applications like satellite solar panels deployment or weather balloon separation need a release device. Several incidents, where pyrotechnic mechanisms could be responsible for spacecraft failure, have been encouraging new designs for these devices. The Frangibolt is a non explosive device which comprises a commercially available bolt and a small collar made of shape memory alloy (SMA) that replace conventional explosive bolt systems. This paper presents the modeling and simulation of Frangiblot by the change of bolt size and notch geometry. This analysis may contribute to improve the Frangibolt design.

Stent modeling and simulation of truss structure using SMA (형상기억합금 트러스 구조물을 이용한 스텐트의 설계 및 해석)

  • Yang, Seong-Pil;Kim, Sang-Haun;Cho, Mang-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.518-522
    • /
    • 2008
  • Recently, many patients related to heart disease have surgical operation by expanding a blood vessel to treat the angiostenosis. So far most angioplasties have been performed using balloon-dilative stent made of stainless steel. Some researchers are studying the stent made of shape memory alloy (SMA) to operate the angioplasty more easily. and there are several papers which introduce the angioplasty using SMA. However, most of the analysis models for stents are constructed using solid elements. So much computing time is required to solve the analysis model. In this study, we suggest the SMA stent model using 1D truss element which is much faster than stent model using 3D solid element. To represent non-linear behavior of SMA, we apply 1D SMA constitutive equation of Lagoudas'. Pseudo-elastic behavior of stent structures is presented as a numerical example.

  • PDF

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

Silicone Rubber Membrane Bioreactors for Bacterial Cellulose Production

  • Onodera, Masayuki;Harashima, Ikuro;Toda, Kiyoshi;Asakura, Tomoko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • Cellulose production by Acetobacter pasteurianus was investigated in static culture using four bioreactors with silicone rubber membrane submerged in the medium. The shape of the membrane was flat sheet, flat sack, tube and cylindrical balloon. Production rate of cellulose as well as its yield on consumed glucose by the bacteria grown on the flat type membranes was approximately ten-fold greater than those on the non-flat ones in spite of the same membrane thickness. The membrane reactor using flat sacks of silicone rubber membrane as support of bacterial pellicle can supply greater ratio of surface to volume than a conventional liquid surface culture and is promising for industrial production of bacterial cellulose in large scale.