• Title/Summary/Keyword: Ballistic range

Search Result 91, Processing Time 0.023 seconds

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking (기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Numerical Simulations of the Normal Perforation Behavior by Penetrator without AOA into Steel Reinforced Concrete Targets (철근강화콘크리트에 대한 받음각이 없는 관통자의 수직관통거동 전산해석)

  • Yun, Kyung Jae;Yoo, Yoo-Han;Kim, Hak Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.398-404
    • /
    • 2013
  • The simulation of the ballistic trajectory of penetrator into the spaced multi-layer RC targets is very important to predict the hitting condition in subsequent target. Because of perturbation by lateral load of penetrator caused by asymmetric hitting position between penetrator and steel bar reinforcement, penetrator rotates and deviates from the straight path. Therefore, penetration capability of penetrator is decreased in the subsequent targets. This paper presents the result of the penetration of steel-bar-reinforced concrete target by using the explicit finite element code LS-DYNA. A series of computations is performed and compared to experimental data and the computed results are in good agreement with the experimental results over a wide range of velocities. And then we conduct the simulation according to various RC target hitting condition and impact velocities.

The experimental investigation for penetration depth and shape of aluminum alloy plates by 5.56mm ball projectile with striking velocities between 350 and 750㎧ (고속충격시 볼탄에 의한 알루미늄 합금의 관통 깊이와 형상에 관한 실험적 연구)

  • 손세원;김희재;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.800-803
    • /
    • 2002
  • This investigation describes and analyses the experimental results proper to the penetration of Al5052-H34 alloy plates of thickness 6, 12 and 16mm(T/D=1, 2, 3) by 5.56mm ball projectiles over the velocity range 350-750㎧. All the high velocity impact tests were carried out at normal impact angle, i.e. zero obliquity. The experimental results presented the variation of depth of penetration, bulge height and diameter, plugged length and diameter with the velocity fur tests on each plate of a given thickness in order to determine the deformation shapes of 5.56mm ball projectiles and targets. Also the protection ballistic limit($V_50$) tests were conducted.

  • PDF

Development of Gun Fire Control System for the FFX-I Program (차기호위함 전투체계용 함포 사격제원계산장치 개발)

  • Suh, Tae-Il;Kim, Eui-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.752-761
    • /
    • 2013
  • A new gun fire control system has been developed for the Korean next generation frigate class. The engineering requirement was far more tightened than the PKG-A class for the firing range availability and gun control function since 5 inch gun is adopted for the new ship. We mention about the principal technologies required to build a generic gun fire control system and proposed methods for the new gun fire control system. The new system has been designed based on the proposed methods in order to satisfy the requirement and functionality has been proved to be acceptable through the sea trial by Korean navy.

The Reynolds Number Effects on the Projectile with an Altitude Change (고도에 따른 발사체의 레이놀즈수 영향성 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Lee, Young-Min;Cho, Tae-Hwan;Myong, Rho-Shin;Park, Chan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.683-688
    • /
    • 2009
  • A research was conducted about the Reynolds number effect on the projectile with an altitude change. The atmosphere conditions change in accordance with an altitude change. It effects the Reynolds number. To confirm how the phenomena affect the trajectory of the projectile, a computer program is designed with an altitude and a range considered. The MISSILE DATCOM which is based on the semi-empirical method was utilized to get aerodynamic coefficients. The result shows that the Reynolds number considerably changes as the altitude change. It causes to change the drag coefficient of the projectile. As the Reynolds number decreases, the skin friction drag increases significantly. It causes to decrease the maximum altitude and the range.

Debris Dispersion and Falling Prediction Modeling Using AUTODYN to Determine Interception Test Evaluation for Safety Zone (요격시험평가 안전구역 설정을 위한 AUTODYN을 이용한 파편분산 및 낙하 예측 모델링)

  • Kang, Bohyun;Kim, Sangho;Park, Kisoon;Chung, Bongcheul;Lee, Seokwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.745-753
    • /
    • 2019
  • Recently, with the development of long-range / high-altitude guided weapon system for defense against ballistic missile, test range and firing altitude for guided weapons are increasing. Due to the increase in the test range and the intercepting altitude, it is expected to increase the range of safety area required for the firing test. Comparing to the foreign countries which have many desert or non-residence, in the domestic circumstances where the population is concentrated and distributed, it is more important to predict the falling area and to set the safety area for safely carry out the long-range / high-altitude intercept test. In this paper, we consider the following three points. The first is the booster fall trajectory modeling, the second is the shroud fall trajectory modeling, and finally, the debris dispersion modeling for the missile intercept. Especially, the AUTODYN model was used to predict debris falling area which produced in the high-speed guided missile intercepting test.

A Study on V50 Calculation in Bulletproof Test using Logistic Regression Model (로지스틱 회귀모형을 활용한 방탄시험에서의 V50 산출방안)

  • Gu, Seung Hwan;Noh, Seung Min;Song, Seung Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.453-464
    • /
    • 2018
  • Purpose: The purpose of this study is to propose a solution to the case where $V_{50}$ calculation is impossible in the process of bulletproof test. Methods: In this study, we proposed a $V_{50}$ estimation method using logistic regression analysis. Six scenarios were applied by combining the homogeneity of the sample and the speed range. Then, 1,000 simulations were performed per scenario and six assumptions reflecting the reality were applied. Results: The result of the study, it was confirmed that there was no statistical difference between the $V_{50}$ value calculated by the conventional method and the $V_{50}$ value calculated by the improvement method. Therefore, in situations where $V_{50}$ can not be calculated, it is reasonable to use logistic regression analysis. Conclusion: This study develops a methodology that is easy to use and reliable by using statistical model based on actual data.

Numerical Simulation of Aerodynamic Characteristics of a Supersonic Projectile (초음속 발사체의 공력 특성에 관한 수치해석)

  • Lim Chae-Min;Lee Jeong-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-89
    • /
    • 2005
  • A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation system. The computed results reasonably capture the major flow characteristics which we generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

A Formulation and Performance Characteristics of Composite Solid Propellant for an Application to Gas Generators (기체발생기용 복합고체추진제의 조성 및 성능특성 연구)

  • Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.181-184
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}C{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

  • PDF