• Title/Summary/Keyword: Ballistic Coefficient

Search Result 20, Processing Time 0.022 seconds

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.

Analysis of Reentry Prediction of CZ-5B Rocket Body (창정 5B호 발사체의 재진입 시점 예측 분석)

  • Seong, Jaedong;Jung, Okchul;Jung, Youeyun;Chung, Daewon
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.149-159
    • /
    • 2021
  • This paper represents a reentry time prediction analysis of CZ-5B rocket-body in China, subject to analysis of the Inter-Agency Space Debris Coordination Committee Reentry (IADC) reentry test campaign conducted in May 2021. Predicting the reentry of space objects is difficult to accurately predict due to the lack of accurate physical information about target, and uncertainty in atmospheric density. Therefore, IADC conducts annual re-entry campaigns to verify analysis techniques by each agency, and the Korea Aerospace Research Institute has also participated in them since 2015. Ballistic coefficient estimation method proposed to predict target reentry time and the result confirmed the difference of 73 seconds, which confirms the accuracy of the proposed method.

Fitting Coefficient Setting Method for the Modified Point Mass Trajectory Model Using CMA-ES (CMA-ES를 활용한 수정질점탄도모델의 탄도수정계수 설정기법)

  • An, Seil;Lee, Kyo Bok;Kang, Tae Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • To make a firing table of artillery with trajectory simulation, a precise trajectory model which corresponds with real firing test is required. Recent 4-DOF modified point mass trajectory model is considered accurate as a theoretical model, but fitting coefficients are used in calculation to match with real firing test results. In this paper, modified point mass trajectory model is presented and method of setting ballistic coefficient is introduced by applying optimization algorithms. After comparing two different algorithms, Particle Swarm Optimization and Covariance Matrix Adaptation - Evolutionary Strategy, we found that using CMA-ES algorithm gives fine optimization result. This fitting coefficient setting method can be used to make trajectory simulation which is required for development of new projectiles in the future.

PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS (증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

A Study on Characteristics of Temperature Independent Propellant Using Di-nitro-diaza-alkane Series Energetic Plasticizers(I) (Di-nitro-diaza-alkane 계열 에너지 가소제를 활용한 온도 둔감 추진제 특성 연구(I))

  • Joo, Hyun-Hye;Joo, Hyung-Uk;Kwon, Tae-Soo;Kwon, Sun-Kil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.698-701
    • /
    • 2011
  • Over recent several years, researches for the less sensitive gun propellant development have been carried out with promising the product of propellants which have temperature independent characteristics using the new energetic plasticizing mixture as Di-nitro-diaza-alkanes. During this study, the promising propellant formulation having temperature ballistic properties as well as better behaviors concerning the cold brittleness of the materials was confirmed by results in tests of a closed bomb and 40mm Gun firing. On-going research on the optimized shape, formulation and processes of the propellant is progressing. From now on it should be done present study to establish the better composition and processes.

  • PDF

Experiment on Multi-Dimensioned IMM Filter for Estimating the Launch Point of a High-Speed Vehicle (초고속 비행체의 발사원점 추정을 위한 다중 IMM 필터 실험)

  • Kim, Yoon-Yeong;Kim, Hyemi;Moon, Il-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.18-27
    • /
    • 2020
  • In order to estimate the launch point of a high-speed vehicle, predicting the various characteristics of the vehicle's movement, such as drag and thrust, must be preceded by the estimation. To predict the various parameters regarding the vehicle's characteristics, we build the IMM filter specialized in predicting the parameters of the post-launch phase based on flight dynamics. Then we estimate the launch point of the high-speed vehicle using Inverse Dynamics. In addition, we assume the arbitrary error level of the radar for accuracy of the prediction. We organize multiple-dimensioned IMM structures, and figure out the optimal value of parameters by comparing the various IMM structures. After deriving the optimal value of parameters, we verify the launch point estimation error under certain error level.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

The Reynolds Number Effects on the Projectile with an Altitude Change (고도에 따른 발사체의 레이놀즈수 영향성 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Lee, Young-Min;Cho, Tae-Hwan;Myong, Rho-Shin;Park, Chan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.683-688
    • /
    • 2009
  • A research was conducted about the Reynolds number effect on the projectile with an altitude change. The atmosphere conditions change in accordance with an altitude change. It effects the Reynolds number. To confirm how the phenomena affect the trajectory of the projectile, a computer program is designed with an altitude and a range considered. The MISSILE DATCOM which is based on the semi-empirical method was utilized to get aerodynamic coefficients. The result shows that the Reynolds number considerably changes as the altitude change. It causes to change the drag coefficient of the projectile. As the Reynolds number decreases, the skin friction drag increases significantly. It causes to decrease the maximum altitude and the range.

An Experimental Method for Obtaining Aerodynamic Roll Damping Coefficients of Fin Stabilized Projectile from Telemetry Experiments (텔레메트리 시험을 이용한 날개안정형 발사체의 회전감쇠 공력계수 실험적 산출 방법)

  • Kim, Jinseok;Kim, Gyeonghun;Choi, Jaehyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.784-789
    • /
    • 2018
  • Accurate aerodynamic characterization of projectile is crucial for successful development of munition. The aerodynamic characterization of fin stabilized projectile is more difficult than characterization of traditional symmetric ballistic projectile. Instrumented free flight experiments were conducted to quantify rolling behavior of fin stabilized projectile. The instrumented projectiles were launched from a rifled tube and the onboard sensor data were acquired through a telemetry transmitter. Roll rate was measured for fin stabilized projectile by means of an angular rate sensor. And, roll damping coefficients were estimated from onboard sensor data acquired during gun firing and trajectory analysis of mathematical model.

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계)

  • Lim, Woochul;Lim, Sunghoon;Kim, Shinyu;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.