• 제목/요약/키워드: Ballastless track

검색결과 27건 처리시간 0.029초

Concrete Crack of Ballastless Track Structure and its Repair

  • Xie, Yongjiang;Li, Huajian;Feng, Zhongwei;Lee, Il-Wha
    • International Journal of Railway
    • /
    • 제2권1호
    • /
    • pp.30-36
    • /
    • 2009
  • Crack and its damage of structure concrete in both FBS and TBS ballastless track are presented. The cause of concrete crack is analyzed. According to corresponding quantitative equation, effective technical measures to depression crack of concrete are put forward, at the same time the rationality of elastic ratio for HGT has been proved. At last, by the analysis of the characteristic of high-speed train, which are serving in the open air, bearing fatigue load, the short time for maintenance window and high speed of service, technical requirement for concrete repair material, repair technology and repair tools of ballastless track structure are presented.

  • PDF

HIGH-SPEED TURNOUTS WITH CONCRETE TRACK SYSTEM (SPEED OVER300Km/H)

  • THOREZ Gerard;BARRESI Francesco;SALOT Romuald;Park Choon-Bok
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.746-749
    • /
    • 2004
  • In collaboration with SAMPYO KRT, VOSSLOH COGIFER has designed and supplied all turnouts for the first Korean high speed project.. The track is laid on ballast and the turnouts were designed accordingly and as per the SNCF standard for turnouts at commercial speed of 300 km/h and design speed of 350 km/h. KNR has now decided to implement a ballastless technology for the extension of the line between (South line). To the best of our knowledge, it has also been decided that the system to be used is ballastless Concrete bearer. Thus, the following presentation has been done with a technology for ballastless track with the same system.

  • PDF

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

분기기와 교량의 상호작용 특성에 관한 연구 (A study on the axial force and displacement characteristics of turnout on a bridge)

  • 양신추;김인재;김은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구 (The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track)

  • 최진유;양신추
    • 한국철도학회논문집
    • /
    • 제11권2호
    • /
    • pp.195-202
    • /
    • 2008
  • 교량과 토공의 접속부은 궤도의 대표적인 취약구간으로서 교대배면의 부등침하로 인한 궤도틀림발생이 빈번하여 유지관리에 많은 어려움을 겪고 있는 구간 중의 하나이다. 콘크리트궤도부설구간의 경우에는 교대배면의 부등침하를 방지하기 위하여 접속슬래브 부설이 일반화되고 있는 추세이다. 이 경우, 접속슬래브를 지지하고 있는 노반의 침하로 인하여 접속슬래브에 경사처짐이 발생하게 되면 궤도도 경사처짐이 발생하게 된다. 이로 인해 이 구간을 통과하는 차량의 주행안정성과 승차감의 저하, 그리고 과도한 충격에 의한 궤도의 손상을 유발하게 되므로 접속슬래브의 단부에서의 침하를 제한할 필요가 있다. 따라서 본 연구에서는 콘크리트 궤도 부설 교량과 토공의 접속부에 부설되는 접속슬래브의 단부에서의 처짐한도를 알아보기 위하여 접속슬래브의 길이와 단부처짐량을 매개변수로 한 차량-궤도 상호작용 해석을 실시하여 차체가속도, 윤중변동률, 레일 저부응력, 그리고 체결구에 발생하는 상향압력을 조사하였으며, 수치해석결과와 각 검토항목별 허용한도와의 비교검토를 통하여 접속슬래브의 길이에 따른 단부처짐의 허용한도를 제시하였다.

Free vibrations of precast modular steel-concrete composite railway track slabs

  • Kimani, Stephen Kimindiri;Kaewunruen, Sakdirat
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.113-128
    • /
    • 2017
  • This paper highlights a study undertaken on the free vibration of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an evolvement from the slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both eigenfrequencies and eigenmodes have been extracted using the Lanczos method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

콘크리트궤도부설 교량의 접속슬래브 허용변위한도에 관한 연구 (The Allowable Displacement Limit on the Approach Slab for a Railway Bridge with Ballastless Track)

  • 최진유;양신추;유진영;조현철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1149-1155
    • /
    • 2007
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab is installed to prevent the phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and the deteriorations of track by excessive impact subjected to the track. In this study, parametric studies were performed to know what is the allowable displacement limit on the approach slab to avoid such a bad effect. The length and amount of unequal settlement of the approach slab was adopted as parameter for numerical analysis. And car body accelerations, variations of wheel force and rail stress and uplift force induced on a fastener clip are investigated. From the result, resonable settlement limits of an approach slab according to slab length was suggested.

  • PDF

기존 무도상 판형교 궤도의 종저항거동에 대한 실험 (An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge)

  • 김경호;황인영;백인철;최상현
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.327-337
    • /
    • 2018
  • 무도상 판형교는 교량 바닥판과 도상 없이 주거더에 궤도가 직접 연결되어 있는 구조로 열차 통과로 인하여 발생한 충격이 교량 주부재에 직접 전달되어 높은 수준의 소음 진동 뿐 아니라 교량의 잦은 손상을 유발하는 특성이 있다. 레일 장대화는 무도상 판형교의 이러한 구조적인 문제를 경감할 수 있으며, 이를 위해서는 차량-궤도 또는 궤도-교량 상호작용에 영향을 미치는 인자의 특성에 대한 명확한 이해가 필요하다. 이 연구에서는 레일체결장치, 침목고정장치 및 궤광을 포함한 실제 무도상 판형교에 설치되어 있는 궤도의 종방향 저항력 특성을 실험을 통하여 검토하였다. 실험은 유도상화 시공을 위하여 철거된 실제 교량을 실험실로 이송하여 수행하였다. 실험 결과 목침목용 레일체결장치의 종방향저항력은 KRS TR 0014-15의 성능합격기준을 만족하며, 교량침목고정장치의 종방향 저항력은 구형과 신형 모두 기존 연구보다 높은 값으로 나타났다. 또한 하중 비재하 시 무도상 궤도의 종방향 저항력은 자갈궤도와 콘크리트궤도 사이의 값으로 나타났다.