• Title/Summary/Keyword: Ball End-Milling

Search Result 133, Processing Time 0.024 seconds

A Characteristic of High Speed Ball End Milling Machining using The Air-Spindle (공기 정압 스핀들을 이용한 고속 볼엔드밀링 가공특성 평가)

  • 이종렬;안선일;안지훈;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.922-925
    • /
    • 2000
  • Generally, the machining accuracy in ball end milling directly depends on the rotational accuracy affected by the spindle speeds. The effects of spindle speeds for rotational accuracy in the high speed regions are more dominant than those in the low speed regions. This paper will investigate effects that the Increased speed affects on the rotational error according to the increase of a rotational speed and machining characteristics of the high speed ball-end milling in various rotational speeds and on various materials by using the high speed air-bearing spindle.

  • PDF

Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling (고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정)

  • Ko, Tae-Jo;Jung, Hoon;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

Effect of Milling Medium Materials on Mechanical Alloying of Mo-25.0at%Si Powder Mixture (Mo-25.0at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향)

  • 박상보
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 1998
  • Milling media of steel and partially stabilized zirconia(PSZ) were used to produce $Mo_3$Si by mechanical alloying(MA) of Mo-25.0at%Si elemental powder mixture. The effect of milling medium materials on MA of the powder mixture have been investigated by XRD and DTA. The reaction rate and the end-product noticeably depended upon the milling medium material. The formation of $Mo_3$Si and $Mo_5Si_3$phases by PSZ ball-milling took place after 15 hr of MA and was characterized by a slow reaction rate as Mo, Si, $Mo_5Si_3$ and $Mo_3$Si coexisted for a long period of milling time. The formation of a new phase by steel ball-milling, however, did not take Place even after 96 hr of MA. DTA and annealing results showed that $Mo_5Si_3$ and $Mo_3$Si were formed after heating the ball-milled powder specimens to different temperatures. At low temperatures, Mo and Si were transformed into $Mo_5Si_3$. At high temperatures, the formation of $Mo_3$Si can be partially attributed to the reaction, 7Mo+Si+$Mo_5Si_3$-.4$Mo_3$Si . The formation of $Mo_3$Si and Mo5Si3 phases by mechanical alloying of the powder mixture and the relevant reaction rate appeared to depend upon the milling medium material as well as the thermodynamic properties of the end-products.

  • PDF

Machining Time Reduction in Rough Machining of Sculptured Surface using Filleted End Mill (필렛 엔드밀을 이용한 자유곡면 황삭가공 시간단축)

  • 신동혁;김종일;김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-19
    • /
    • 1996
  • The cusp height in ball end milling, flat end milling and filleted end milling according to various surface inclination angle was calculated. The calculation result shows that, for each kind of tools, there exists certain range of inclination angle in which cusp height characteristics favorable. From machining time calculation, filleted end mill found to be superior to flat end mill in rough machining of sculptured surface.

  • PDF

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining (티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구)

  • Jung, Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

Development of a Virtual Machining System by a CAD Model Based Cutting Simulation (CAD 모델에 기초한 모사절삭을 통한 가상절삭 시스템 개발)

  • 배대위;고태조;김희술
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.83-91
    • /
    • 1999
  • In this paper, we suggest a virtual machining system that can simulate cutting forces of ball end milling at the stage of part design. Cutting forces, here, are estimated from the machanistic model that uses the concept of specific cutting farce coefficient. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived from the Z-map data of a CAD model. That is, chip load is the height difference between the cutting tool and the workpiece at an arbitrary position. The tool contact point is referred from the cutter location data. On the other hand, the workpiece height is acquired from the Z-map model of a CAD data. From the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF

Development of a Virtual Machining System by a CAD Model Based Cutting Simulation (CAD 모델에 기초한 모사절삭을 통한 가상절삭시스템 개발)

  • 배대위;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.942-946
    • /
    • 1997
  • In this research,we suggest a virtual machining system that can simulate sutting forces at the stage of design. Cutting forces,here, are modeled form the machanistic model of the ball end milling. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived form the z-map data of a CAD model. That is, chip load is the height difference between the cutting tool contact point and the workpiece at arbitrary position. The tool contact point is referred from the cutter location. Form the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF

Assessment of Cutting Ability for CBN Ball End-Milling (금형가공에서의 CBN 공구의 절삭성능평가)

  • Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.227-234
    • /
    • 2005
  • In this study an experimental investigation was conducted to assesment of cutting ability for CBN ball end-milling, STD11 and NAK80 materials. The cutting force and surface roughness of the work-pieces were obtained in machining center. The assessment of CBN tools were inspected through the tool dynamotor and SEM. When $30^{\circ}$ negative rake angle, the wear and cutting force were good, surface roughness was better at cutting fluid during CBN cutting.

  • PDF

A Machinability test on the cutting position in the ball-end milling of hemisphere (볼엔드밀 반구가공에서 가공 위치에 따른 절삭성 평가)

  • 박희범;김석원;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.890-893
    • /
    • 2000
  • In this paper, the test of machinability according to the cutting positions when the ball end milling of hemispheric workpiece is carried out to find the optimum cutting position of free form surface die. Tool runout, cutting force. and chip form are measured. The results show that the optimum cutting condition to get the constant feed per tooth is the inclined angle of 40 degree of workpiece.

  • PDF