• Title/Summary/Keyword: Baleage

Search Result 3, Processing Time 0.023 seconds

Moisture Concentration Variation of Silages Produced on Commercial Farms in the South-Central USA

  • Han, K.J.;Pitman, W.D.;Chapple, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1436-1442
    • /
    • 2014
  • Preservation of forage crops as silage offers opportunity to avoid the high risk of rain-damaged hay in the humid south-central USA. Recent developments with baled silage or baleage make silage a less expensive option than typical chopped silage. Silage has been important in the region primarily for dairy production, but baleage has become an option for the more extensive beef cattle industry in the region. Silage samples submitted to the Louisiana State University Agricultural Center Forage Quality Lab from 2006 through 2013 were assessed for dry matter (DM) and forage nutritive characteristics of chopped silage and baleage of the different forage types from commercial farms primarily in Louisiana and Mississippi. Of the 1,308 silage samples submitted, 1,065 were annual ryegrass (AR) with small grains (SG), the warm-season annual (WA) grasses, sorghums and pearl millet, and the warm-season perennial (WP) grasses, bermudagrass and bahiagrass, providing the remaining samples. Concentration of DM was used to indicate an effective ensiling opportunity, and AR silage was more frequently within the target DM range than was the WA forage group. The AR samples also indicated a high-quality forage with average crude protein (CP) of 130 g/kg and total digestible nutrient (TDN) near 600 g/kg. The cooler winter weather at harvest apparently complicated harvest of SG silage with chopped SG silage lower in both CP and TDN (104 and 553 g/kg, respectively) than either AR silage or baleage of SG (137 and 624 g/kg for CP and TDN, respectively). The hot, humid summer weather along with large stems and large forage quantities of the WA grasses and the inherently higher fiber concentration of WP grasses at harvest stage indicate that preservation of these forage types as silage will be challenging, although successful commercial silage samples of each forage type and preservation approach were included among samples of silages produced in the region.

Bale Location Effects on Nutritive Value and Fermentation Characteristics of Annual Ryegrass Bale Stored in In-line Wrapping Silage

  • Han, K.J.;McCormick, M.E.;Derouen, S.M.;Blouin, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1276-1284
    • /
    • 2014
  • In southeastern regions of the US, herbage systems are primarily based on grazing or hay feeding with low nutritive value warm-season perennial grasses. Nutritious herbage such as annual ryegrass (Lolium multiflorum Lam.) may be more suitable for preserving as baleage for winter feeding even with more intensive production inputs. Emerging in-line wrapped baleage storage systems featuring rapid wrapping and low polyethylene film requirements need to be tested for consistency of storing nutritive value of a range of annual ryegrass herbage. A ryegrass storage trial was conducted with 24-h wilted 'Marshall' annual ryegrass harvested at booting, heading and anthesis stages using three replicated in-line wrapped tubes containing ten round bales per tube. After a six-month storage period, nutritive value changes and fermentation end products differed significantly by harvest stage but not by bale location. Although wilted annual ryegrass exhibited a restricted fermentation across harvest stages characterized by high pH and low fermentation end product concentrations, butyric acid concentrations were less than 1 g/kg dry matter, and lactic acid was the major organic acid in the bales. Mold coverage and bale aroma did not differ substantially with harvest stage or bale location. Booting and heading stage-harvested ryegrass baleage were superior in nutritive value to anthesis stage-harvested herbage. Based on the investigated nutritive value and fermentation characteristics, individual bale location within in-line tubes did not significantly affect preservation quality of ryegrass round bale silages.

Review of the Current Forage Production, Supply, and Quality Measure Standard in South Korea

  • Kim, Jong Duk;Seo, Myeongchon;Lee, Sang Cheol;Han, Kun-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.149-155
    • /
    • 2020
  • Cattle feeding in South Korea has been heavily dependent on domestically produced rice straw and imported grain. Around 42% of domestically produced rice straw is utilized for forage, and the remainder is recycled to restore soil fertility. Approximately 35% of round baleages were made with rice straw. However, higher quality hay is desired over rice straw. Due to increasing stockpiles of rice, there has been an economic burden on the government to store the surplus; therefore production of annual forage crops in rice fields has been further promoted in recent years. Hay import from the USA currently constitutes more than 80% of total imported hays. The main imported hays are alfalfa (Medicago sativa), timothy (Phleum pretense), and tall fescue (Festica arundinacea). The estimated forage required for cattle feeding was approximately 5.4 million MT in 2016. Domestically produced forage sates only 43% of that value, while low quality rice straw and imported hay covered the rest of demand by 33% and 20%, respectively. As utilization of domestically produced forage is more desirable for forage-based cattle production, long-term strategies have been necessary to promote domestic production of high quality baleage. One such strategy has been utilizing the fertile soil and abundance of fallow rice fields of western region of S. Korea to produce forage crops. Italian ryegrass (Lolium multiflorum) is the most successfully produced winter annual in the region and is approximately 56% of the total winter annual forage production. Forage sorghums (Sorghum bicolor), sorghum × sudangrass hybrids, and hybrid corn (Zea mays) produce a substantial amount of warm-season forage during summer. Produced forage has been largely stored through baleage due to heavy dew and frequent rains and has been evaluated according to S. Korea's newly implemented baleage commodity evaluation system. The system weighs 50% of its total grading points on moisture content because of its importance in deliverable DM content and desirable baleage fermentation; this has proved to be an effective method. Although further improvement is required for the future of forage production in South Korea, the current government-led forage production in rice fields has been able to alleviate some of the country's shortage for quality hay.