• Title/Summary/Keyword: Balancing circuit

Search Result 131, Processing Time 0.032 seconds

Biphasic Electrical Nerve Stimulator for Medical Applications Generating a Wide Range of Pulse Specifications Without Microcontroller

  • Jun Sang Yu;Dong Rim Kim;Su Bin Kang;Jung Suk Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.173-178
    • /
    • 2024
  • We present an improved biphasic electrical nerve stimulator designed to overcome limitations. Traditional electrical nerve stimulators lacking a microcontroller unit (MCU) have restrictions in terms of frequency, pulse duration, and amplitude control, making them insufficient for medical applications requiring a broader range of pulse specifications. To address this, we developed a stimulator with enhanced capabilities. By not using an MCU, the design reduces power consumption and the required area, simplifying the overall design and increasing efficiency. In addition, our approach optimizes oscillator parameters to achieve wide frequency and pulse duration ranges. Specifically, we expanded the frequency range of the stimulator up to from 1 mHz to 100 kHz and the pulse duration up to from 5 ㎲ to 500 s. Improved amplitude control mechanisms were implemented for adjustable and high biphasic amplitudes. Furthermore, we added a balancing circuit to ensure proper discharging for tissue safety when biphasic pulses do not occur. The improved stimulator demonstrated an increase in operational range compared to traditional MCU-less designs, producing consistent biphasic pulses with adjustable amplitude and duration. The balancing circuit effectively managed discharging, reducing the risk of tissue damage and ensuring safety and efficacy.

A Circuit Design for Clamping an Overvoltage in Three-level GTO Inverters (3-레벨 GTO 인버터를 위한 과전압 제한회로 설계)

  • Suh, Bum-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.258-261
    • /
    • 1994
  • This paper presents a circuit design far clamping the overvoltages across the GTOs in three-level GTO inverters. The proposed circuit has two roles as follows; one is to minimize the power dissipation in each GTO. It can be achieved by clamping the overvoltage to half that of the DC-link voltage as exactly as possible. The other is to get blocking voltage balancing between the inner GTOs and the outer GTOs.

  • PDF

Two Switches Balanced Buck Converter for Common-Mode Noise Reduction

  • Kanjanasopa, Warong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.493-498
    • /
    • 2004
  • The EMI noise source in a switching mode power supply is dominated by a common mode noise. If we can understand the common mode noise occurring mechanism, it is resulted to find out the method to suppress the EMI noise source in the switching mode power supply. The common mode noise is occurring mostly due to circuit is unbalanced which is caused by the capacitive coupling to frame ground, which passes through a heatsink of the switching devices. This research paper presents a new effective balancing method of buck converter circuit by mean of grounding the parasitic and compensation capacitors in correct proportion which is called that the common mode impedance balance (CMIB). The CMIB can be achieved by source, transmission line and termination balanced, such balancing, the common mode current will be cancelled out in the frame ground. The greatly reduced common mode noise can be confirmed by the experimental results.

  • PDF

A High Efficiency Zero Voltage/Zero Current Transition Converter for Series Connected Battery Cell Equalization (영전압/영전류 스위칭을 이용한 고효율의 직렬 접속 배터리 전압 밸런싱 방법)

  • Kim, Tae-hoon;Park, Nam-Ju;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.26-27
    • /
    • 2011
  • This paper focuses on the zero-voltage/zero current transition voltage equalization circuit for the series connected battery cell. By adding auxiliary resonant cells at the main switching devices such as MOSFET or IGBT, zero current switching is achieved and turned off loss of switching elements is eliminated and by the voltage/second balancing of the inductor, zero voltage switching can be applied to switching element. Transformer coupling between battery cells and ZVZCT (Zero Voltage Zero Current Transition) switching method allow the fast balancing speed and high frequency operation, which reduces the size and weight of the circuit. The validity of the battery equalization is further verified using simulation involving four lithium-ion battery cell models.

  • PDF

STATCOM Control for Balancing the Unbalanced Loads (불평형 부하의 평형화를 위한 STATCOM 제어)

  • Im, Su-Saeng;Lee, Eun-Ung;Kim, Hong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.522-528
    • /
    • 2000
  • In this paper, a static synchronous compensator(STATCOM), which in general compensates reactive power, is proposed in order to balance the unbalanced loads. Reference values for the compensation of the unbalanced loads currents are determined by 3-phase circuit analysis result. Also the STATCOM control unit is designed considering the proposed compensation scheme for the unbalanced loads. As a result, the effectiveness of the STATCOM for balancing the load currents is verified by computer simulations.

  • PDF

Development of Converter for High Frequency Welding Machines using Active Snubber (액티브 스너버를 이용한 고주파 용접기 컨버터 개발)

  • Shin, Jun-Young;Lee, Jae-Min;Choi, Seung-Won;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.351-355
    • /
    • 2016
  • Welding machines are high-capacity systems used in a low-frequency range using IGBT. As their system is similar to a large transformer, most welding machines suffer a great loss because of hard switching and vast leakage inductance. A voltage-balancing circuit is designed to overcome these shortcomings. This circuit can reduce the transformer size by making it into a high frequency and reducing the input voltage by half and by adopting a serial structure that connects two full-bridges in a series to use a MOSFET with a good property at high frequency. In addition, a Schottky diode is used in the primary rectifier to overcome the low efficiency of most welding machines. To use the Schottky diode with a reliably relatively low withstanding voltage, an active snubber is adopted to effectively limit the ringing voltage of the diode cut-off voltage.

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.

Coupled Inductor Based Voltage Balancing in Dual-Output CLL Resonant Converter for Bipolar DC Distribution System (양극성 DC 배전 시스템 적용을 위한 결합 인덕터 기반의 전압 밸런싱 이중 출력 CLL 공진형 컨버터)

  • Lee, Seunghoon;Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.348-355
    • /
    • 2022
  • A bipolar DC distribution system suffers from an imbalance in voltages when asymmetric loads are connected at the outputs. Dedicated voltage balancers are required to address the imbalance in bipolar voltage levels. However, additional components eventually increase the cost and decrease the efficiency and power density of the system. Therefore, to deal with the imbalance in output voltages without adding any extra components, this study presents a coupled inductor-based voltage balancing technique with a dual-output CLL resonant converter. The proposed coupled inductor does not require extra magnetic components to balance the output voltages because it is the result of resonant inductors of the CLL tank circuit. It can also avoid complex control schemes applied to voltage balancing. Moreover, with the proposed coupled inductor, the CLL converter acquires good features including zero voltage and zero current switching. Detailed analysis of the proposed coupled inductor is presented with different load conditions. A 3.6-kW hardware prototype was built and tested to validate the performance of the proposed coupled inductor-based voltage balancing technique.

Voltage Balancing Circuit for Li-ion Battery System (리튬-이온 배터리 시스템을 위한 전압안정화 회로)

  • Park, Kyung Hwa;Yi, Kang Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.73-80
    • /
    • 2013
  • Recently, Li-ion battery is regarded as a potential energy storage device in the lime light and it can supply power to the satellite very effectively during eclipse. Because it has better features as high voltage range, large capacity and small volume than any other battery. Generally, multi cells are connected in series to use Li-ion batteries in satellite application. Since the internal resistance of cells is different each other, voltage in some cells can be overcharged or undercharged, so capacity of the cell is reduced and the life of whole battery pack is decreased. Therefore, a voltage balancing circuit with Fly-back converter is proposed and the voltage equalization of each cell is verified the prototype in this paper.

A New LED Current Balancing Scheme Using Double-Step-Down DC-DC Converter (이중강압 DC-DC 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Kim, Kisu;Do, Duc Tuan;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1474-1480
    • /
    • 2017
  • This paper presents a new LED current balancing scheme using double-step-down dc-dc converter. With the proposed structure, the two channel LED currents are automatically balanced without using any dedicated control or auxiliary circuit. In addition, switching loss of the switching devices in the proposed LED driver is lower than that of the conventional buck LED driver. To verify the operation of the proposed LED driver, a hardware prototype is built and tested with different number of LED.