• 제목/요약/키워드: Balancing Circuits

검색결과 30건 처리시간 0.03초

LVDC 배전을 위한 75kW급 양방향 컨버터 연구 (A Study on 75kW Bidirectional Converter for LVDC Distribution)

  • 이정용;김호성;조진태;김주용;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.432-433
    • /
    • 2018
  • A new DC-DC converter circuit for LVDC(Low Voltage Direct-Current) distribution is proposed. DC-DC converter consists of two stage which are voltage balancer and converter stage. The balancing circuit adjust balance input voltage of converter circuit and compensate for unbalanced loads and short circuits. The converter circuit control the bipolar output voltage ${\pm}750V$. Simulation is carried out for this DC-DC converter system.

  • PDF

A Family of Non-Isolated Photovoltaic Grid Connected Inverters without Leakage Current Issues

  • Ji, Baojian;Wang, Jianhua;Hong, Feng;Huang, Shengming
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.920-928
    • /
    • 2015
  • Transformerless solar inverters have a higher efficiency than those with an isolation link. However, they suffer from a leakage current issue. This paper proposes a family of single phase six-switch transformerless inverter topologies with an ac bypass circuit to solve the leakage current problem. These circuits embed two unidirectional freewheeling current units into the midpoint of a full bridge inverter, to obtain a freewheeling current path, which separates the solar panel from the grid in the freewheeling state. The freewheeling current path contains significantly fewer devices and poor performance body diodes are not involved, leading to a higher efficiency. Meanwhile, it is not necessary to add a voltage balancing control method when compared with the half bridge inverter. Simulation and experiments are provided to validate the proposed topologies.

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

리튬이온 전지 기술을 채용한 인공위성용 전력계 개념 설계 (Conceptual Design of Electrical Power System using Li-ion Cell Technology for a Satellite)

  • 신구환;박경화;김형명;임종태
    • 한국항공우주학회지
    • /
    • 제35권2호
    • /
    • pp.115-123
    • /
    • 2007
  • 본 논문은 리튬이온 (Li-ion) 셀을 채용한 인공위성용 전력계의 개념 설계에 대하여 기술한다. 기존의 니켈카드뮴 (NiCd) 셀과 비교할 때, 리튬이온 (Li-ion) 셀은 에너지 밀도, 무게 그리고 부피에서 큰 잇점을 갖고 있다. 니켈카드뮴 (NiCd) 셀의 평균 출력전압은 +1.2V이며, 리튬이온 (Li-ion) 셀의 출력전압은 +3.6V이다. 그러나, 리튬이온 (Li-ion) 셀의 충전과 방전에 있어서의 절차는 기존의 니켈카드뮴 (NiCd) 셀 보다는 어렵다. 따라서, 리튬이온 (Li-ion) 셀의 충전과 방전 시에는 각각의 셀에 대하여 충전 전압과 방전 전압을 검침하고 제어를 해주어야 하므로 별도의 제어 회로가 요구된다. 따라서, 본 논문을 통하여 리튬이온 (Li-ion) 셀을 채용한 전력계의 설계 시 고려하여야 할 사항 및 리튬이온 (Li-ion) 셀의 충방전 특성에 대한 연구 결과를 제시하고자 한다.

Design of a Charge Equalizer Based on Battery Modularization

  • Park, Hong-Sun;Kim, Chol-Ho;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.413-415
    • /
    • 2008
  • The charge equalizer design for a series connected battery string is very challenging because it needs to satisfy many requirements such as implementation possibility, equalization speed, equalization efficiency, controller complexity, size and cost issues, voltage and current stress, and so on. Numerous algorithms and circuits were developed to meet the above demands and some interesting results have been obtained through them. However, for a large number of cells, for example, eighty or more batteries, the previous approaches might cause problems. Such problems include long equalization time, high controller complexity, bulky size, high implementation cost, and high voltage and current stress. To overcome these circumstances, this paper proposes a charge equalizer design method based on a battery modularization technique. In this method, the number of cells that we consider in an equalizer design procedure can be effectively reduces; thus, designing a charge equalizer becomes much easier. Furthermore, by applying the previously verified charge equalizers to the intramodule and the outer-module, we can obtain easy design of a charge equalizer and good charge balancing performance. Several examples and experimental results are presented to demonstrate the usefulness of the charge equalizer design method.

  • PDF

High Step-Down Multiple-Output LED Driver with the Current Auto-Balance Characteristic

  • Luo, Quanming;Zhu, Binxin;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.519-527
    • /
    • 2012
  • A high step-down multiple-output LED driver is proposed in this paper. Firstly, the derivation of the driver with dual-output is presented and its operation principle and steady state performance are analyzed in detail. Secondly, a high step-down N-channel LED driver is proposed and its current auto-balance characteristic and step-down ratio are analyzed. Finally, an experimental prototype is built and the experimental results are given. The theoretical analysis and experimental results show that the proposed driver has the following virtues: First, if load balancing is achieved, the voltage gain is 1/N that of a Buck driver, where N is the number of channels. Second, each output automatically has an equal output current, without requiring more current close-loop control circuits than a Buck driver. Last, the voltage stresses of the switches and diodes are lower than those of a Buck driver, meaning that lower voltage switches and diodes can be used, and a higher efficiency can be expected.

Novel Five-Level Three-Phase Hybrid-Clamped Converter with Reduced Components

  • Chen, Bin;Yao, Wenxi;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1119-1129
    • /
    • 2014
  • This study proposes a novel five-level three-phase hybrid-clamped converter composed of only six switches and one flying capacitor (FC) per phase. The capacitor-voltage-drift phenomenon of the converter under the classical sinusoidal pulse width modulation (SPWM) strategy is comprehensively analyzed. The average current, which flows into the FC, is a function of power factor and modulation index and does not remain at zero. Thus, a specific modulation strategy based on space vector modulation (SVM) is developed to balance the voltage of DC-link and FCs by injecting a common-mode voltage. This strategy applies the five-segment method to synthesize the voltage vector, such that switching losses are reduced while optional vector sequences are increased. The best vector sequence is then selected on the basis of the minimized cost function to suppress the divergence of the capacitor voltage. This study further proposes a startup method that charges the DC-link and FCs without any additional circuits. Simulation and experimental results verify the validity of the proposed converter, modulation strategy, and precharge method.

양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구 (A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid)

  • 윤혁진;김명호;백주원;김주용;김희제
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Design Optimization of Hybrid-Integrated 20-Gb/s Optical Receivers

  • Jung, Hyun-Yong;Youn, Jin-Sung;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.443-450
    • /
    • 2014
  • This paper presents a 20-Gb/s optical receiver circuit fabricated with standard 65-nm CMOS technology. Our receiver circuits are designed with consideration for parasitic inductance and capacitance due to bonding wires connecting the photodetector and the circuit realized separately. Such parasitic inductance and capacitance usually disturb the high-speed performance but, with careful circuit design, we achieve optimized wide and flat response. The receiver circuit is composed of a transimpedance amplifier (TIA) with a DC-balancing buffer, a post amplifier (PA), and an output buffer. The TIA is designed in the shunt-feedback configuration with inductive peaking. The PA is composed of a 6-stage differential amplifier having interleaved active feedback. The receiver circuit is mounted on a FR4 PCB and wire-bonded to an equivalent circuit that emulates a photodetector. The measured transimpedance gain and 3-dB bandwidth of our optical receiver circuit is 84 $dB{\Omega}$ and 12 GHz, respectively. 20-Gb/s $2^{31}-1$ electrical pseudo-random bit sequence data are successfully received with the bit-error rate less than $10^{-12}$. The receiver circuit has chip area of $0.5mm{\times}0.44mm$ and it consumes excluding the output buffer 84 mW with 1.2-V supply voltage.

다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 새로운 스위칭 방식 (A New Switching Method to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer)

  • 이상중;김명호;백주원;강대욱;정지훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.165-167
    • /
    • 2018
  • 본 논문은 다권선 변압기를 이용한 능동 셀 밸런싱 회로의 에너지 전달 효율을 향상시킬 수 있는 스위칭 방식을 제안한다. 다권선 변압기를 이용한 밸런싱 회로는 셀 당 하나의 스위치가 사용되며, 하나의 변압기 권선을 두 개의 셀이 공유하는 구조를 가져 다른 능동 셀 밸런싱 회로보다 소량의 능동 소자 및 수동 소자가 사용되는 장점을 갖는다. 이 밸런싱 회로는 직렬 셀 전압의 분포에 따라 에너지를 공급하는 소스 셀과 에너지를 받는 목표 셀을 선택하여 벅-부스트 및 플라이백 방식으로 동작한다. 하지만, 플라이백 동작에서 기존의 스위칭 방식을 사용할 경우, 변압기의 커플링 계수의 영향으로 인해 밸런싱 과정 중 비-목표 셀로 전달되는 에너지가 발생하게 된다. 이는 에너지 전달 효율을 감소시켜 셀 밸런싱 과정 중 새로운 셀 불균형 현상을 초래한다. 본 논문에서는 플라이백 동작에서 변압기의 커플링 영향을 최소화하여 셀 밸런싱을 효과적으로 수행할 수 있는 스위칭 방식을 제안하였다. 제안한 스위칭 방식의 성능은 1 W급 시작품을 이용한 실험을 통하여 검증되었다.

  • PDF