• 제목/요약/키워드: Balanced energy load

검색결과 42건 처리시간 0.028초

Balancing Well 교차혼합 지중열교환기의 스마트 냉난방 히트펌프 시스템의 성능평가에 관한 연구 (Study on the Performance Evaluation of Smart Heating and Cooling Heat Pump System in a Balancing Well Cross-Conditioned Ground Heat Exchanger)

  • 이창희;김동규;유병석;김부일
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a single hole operation method using a balancing well-cross-mixed underground heat exchanger, and conducted thermal performance studies of an SCW-type underground heat exchanger using a two-well. The study attempted to change the existing operating method of the two adjacent SCW underground heat exchangers with one ball each. The SCW-type geothermal heat exchanger is considered to enable up to 20% of bleed discharge at maximum load, which makes groundwater usage unequal. The efficiency factor of the geothermal system was improved by constructing the discharged water by cross-mixing two balancing wells to prevent the discharge of groundwater sources and keep the temperature of the underground heat exchanger constant. As a result of the cooling and heating operation with the existing SCW heat exchange system and the balancing well-cross-mixed heat exchange system, the measured performance coefficient improved by 23% and 12% in cooling and heating operations, respectively. In addition, when operating with a balanced cross-mixing heat exchange system, it has been confirmed that the initial basement temperature is constant with a standard deviation of 0.08 to 0.12℃.

센서 네트워크에서 클러스터 헤드의 load-balancing을 통한 에너지 효율적인 클러스터링 (An Energy-Efficient Clustering Using Load-Balancing of Cluster Head in Wireless Sensor Network)

  • 남도현;민홍기
    • 정보처리학회논문지C
    • /
    • 제14C권3호
    • /
    • pp.277-284
    • /
    • 2007
  • 무선 센서 네트워크(Wireless Sensor Network)에서 라우팅 방식은 에너지 효율 측면에서 데이터의 전송량을 줄일 수 있는 클러스터링 방식이 사용된다. 하지만 클러스터링 방식은 클러스터 헤드 노드의 에너지 소모가 많은 문제점이 있다. 클러스터 헤드 노드의 에너지 소모가 많은 문제를 보완하기 위한 방식으로 클러스터 헤드 노드의 재 선출을 통해 에너지 소모를 분산하는 동적 클러스터링(dynamic clustering) 방식이 사용되고 있다. 그러나 동적 클러스터링 방식의 경우 클러스터 헤드 노드를 재선출할 때마다 클러스터 구조가 바뀌게 되며, 이로 인한 에너지 소모가 발생한다. 즉 지금까지 연구된 동적 클러스터링 방식은 많은 에너지를 소모하는 클러스터 헤드 노드 선출 및 클러스터 형성의 셋업(set-up) 과정이 반복적으로 일어나는 문제점이 있다. 따라서 본 논문은 반복적인 셋업의 에너지 소모 문제를 해결하기 위해 클러스터는 고정하고, 클러스터 내의 클러스터 헤드 노드를 Round-Robin으로 선출하는 RRCH(Round-Robin Cluster Header)방식을 제안하였다. RRCH방식은 한번 구성된 클러스터 내에서 각 센서 노드(sensor node)의 지속적이고 균형적인 에너지 소모를 이루어, LEACH방식처럼 셋업 과정이 반복적으로 일어나지 않게 하는 에너지 효율적인 방식이다. 이 제안의 타당성을 모의실험을 통해 확인하였다.

유비쿼터스 센서 네트워크를 위한 부하 분산 AODV 프로토콜 (AODV Protocol with Load Distribution for Ubiquitous Sensor Networks)

  • 조영준;김성철;조용범;조성준
    • 한국항행학회논문지
    • /
    • 제11권4호
    • /
    • pp.461-472
    • /
    • 2007
  • 유비쿼터스 센서 네트워크 (USN)의 노드에서 노드의 에너지가 한정되어 있기 때문에 센서 네트워크의 수명을 연장하기 위해서는 각 노드의 에너지 소모를 가능한 균일하게 하여야 한다. USN에서 라우팅 프로토콜로서 많이 도입이 되어 지고 있는 AODV는 각 노드의 잔여 배터리 전력량을 고려하지 않고 경로를 채택하므로 각 노드의 불균형적인 전력 소모 현상이 심각하게 발생한다. 본 논문에서는 AODV를 수정하여 각 센서 노드의 패킷 중계량에 따라 적응적으로 그 중계량을 제어하여, 특정 노드에 트래픽이 몰리는 것을 방지하고 전체 네트워크의 수명을 높일 수 있는 기법을 제안한다. 시뮬레이션을 통해 제안한 알고리즘을 센서 네트워크에 적용했을 때, 각 센서 노드의 패킷 중계량이 비슷하게 유지됨으로써 USN의 동작 수명을 높일 수 있음을 검증하였다.

  • PDF

Thermo-fluid engineering in deep geothermal energy

  • 김영원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF

Application of Superconducting Flywheel Energy Storage System to Inertia-Free Stand-Alone Microgrid

  • Bae, SunHo;Choi, DongHee;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1442-1448
    • /
    • 2017
  • Recently, electric power systems have been operating with tight margins and have reached their operational limits. Many researchers consider a microgrid as one of the best solutions to relieve that problem. The microgrid is generally powered by renewable energies that are connected through power converters. In contrast to the rotational machines in the conventional power plants, the converters do not have physical rotors, and therefore they do not have rotational inertia. Consequently, a stand-alone microgrid has no inertia when it is powered by the only converter-based-generators (CBGs). As a result, the relationship between power and frequency is not valid, and the grid frequency cannot represent the power balance between the generator and load. In this paper, a superconducting flywheel energy storage system (SFESS) is applied to an inertia-free stand-alone (IFSA) microgrid. The SFESS accelerates or decelerates its rotational speed by storing or releasing power, respectively, based on its rotational inertia. Then, power in the IFSA microgrid can be balanced by measuring the rotor speed in the SFESS. This method does not have an error accumulation problem, which must be considered for the state of charge (SOC) estimation in the battery energy storage system (BESS). The performance of the proposed method is verified by an electromagnetic transient (EMT) simulation.

계층형 무선센서네트워크를 위한 분리된 이중화 라우팅 (Separated Dual-layering Routing Scheme (SDRS) for Hierarchical Wireless Sensor Networks)

  • 최해원;김경준;김현성
    • 한국항행학회논문지
    • /
    • 제13권4호
    • /
    • pp.551-558
    • /
    • 2009
  • 에너지 효율성 초점이 맞추어진 대부분의 클러스터링 기법에서 클러스터 내에서 단일의 클러스터를 채용함으로써 클러스터 헤드의 에너지 소비가 급격히 증가 할 수 있다. 최근, 이러한 단점을 개선하기 위해 데이터 병합 기능 헤드와 데이터 전송 기능 헤드로 구분하는 2-계층 클러스터 기법은 클러스터 내에서 클러스터 헤드의 에너지 소비를 분산시켰다. 그러나 이러한 구조는 한 클러스터 내에 존재하는 두 개 헤드 사이에 독립적인 영역구분이 없는 단지 논리적인 영역이므로 많은 메시지 충돌과 전송 지연이 발생한다. 이러한 문제점을 해결하기 위해, 본 논문에서는 노드의 위치정보와 클러스터 반경을 이용해 한 클러스터에 속한 두 계층을 독립적으로 명확히 분할할 수 있는 분리된 2-계층 라우팅기법을 제시한다. 제안하는 스킴에서는 각 계층에 속하는 멤버노드 수에 대한 균등분포를 통해 부하의 분산을 보장한다. 제안한 기법은 기존의 DLS 기법보다 메시지 충돌문제를 50% 개선하였고, 네트워크의 수명도 DLS와 LEACH 등에 비해 약 10% 개선하였다.

  • PDF

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

멀티레벨 승압 DC-DC 컨버터와 구성된 독립형 부하를 위한 단상 5레벨 인버터 (Single Phase Five Level Inverter For Off-Grid Applications Constructed with Multilevel Step-Up DC-DC Converter)

  • 이바둘라예브 안바르;박성준
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.319-328
    • /
    • 2020
  • The recent use of distributed power generation systems constructed with DC-DC converters has become extremely popular owing to the rising need for environment friendly energy generation power systems. In this study, a new single-phase five-level inverter for off-grid applications constructed with a multilevel DC-DC step-up converter is proposed to boost a low-level DC voltage (36 V-64 V) to a high-level DC bus (380 V) and invert and connect them with a single-phase 230 V rms AC load. Compared with other traditional multilevel inverters, the proposed five-level inverter has a reduced number of switching devices, can generate high-quality power with lower THD values, and has balanced voltage stress for DC capacitors. Moreover, the proposed topology does not require multiple DC sources. Finally, the performance of the proposed topology is presented through the simulation and experimental results of a 400 W hardware prototype.

Development of the Control System for the Motor-Driven Electromechanical Total Artificial Hearta

  • Kim, Hee-Chan;Lee, Sang-Hun;Kim, Jong-Won-;Kim, Jin-Tae-;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.858-863
    • /
    • 1988
  • A micro-processor based control system for a brushless DC motor used in the motor-driven electromechanical total artificial heart was developed. Functionally, the control system is composed of two parts. The first part is the velocity and position controller to assure that the motor follows a predetermined optimal velocity profile with minimal energy consumption, and to guarantee the full stroke length. This part also utilize the passive adaptive control method to be robust against the load disturbance, system parameter variation, and uncertainty which is the environment of artificial heart system. The pump output control is the second part, and this part provides the required responses of the artificial heart to the time-varying physiologic demands. The basic requirements of these responses are preload sensitivity, afterload insensitivity, and the balanced ventricular outputs. The performance and reliability of this control system was evaluated through a series of mock circulation tests and animal implantation, and the results are very encouraging.

  • PDF

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.